版权所有,转帖注明出处



Scikit-learn是一个开源Python库,它使用统一的接口实现了一系列机器学习、预处理、交叉验证和可视化算法。

一个基本例子

from sklearn import neighbors, datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X, y = iris.data[:, :2], iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy_score(y_test, y_pred)

加载数据

数据类型可以是NumPy数组、SciPy稀疏矩阵,或者其他可转换为数组的类型,如panda DataFrame等。

import numpy as np
X = np.random.random((10,5))
y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
X[X < 0.7] = 0

预处理数据

标准化/Standardization

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X_train)
standardized_X = scaler.transform(X_train)
standardized_X_test = scaler.transform(X_test)

归一化/Normalization

from sklearn.preprocessing import Normalizer
scaler = Normalizer().fit(X_train)
normalized_X = scaler.transform(X_train)
normalized_X_test = scaler.transform(X_test)

二值化/Binarization

from sklearn.preprocessing import Binarizer
binarizer = Binarizer(threshold=0.0).fit(X)
binary_X = binarizer.transform(X)

类别特征编码

from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()
y = enc.fit_transform(y)

缺失值估算

>>>from sklearn.preprocessing import Imputer
>>>imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>>imp.fit_transform(X_train)

生成多项式特征

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(5)
oly.fit_transform(X)

训练与测试数据分组

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)

创建模型

有监督学习模型

线性回归

from sklearn.linear_model import LinearRegression
lr = LinearRegression(normalize=True)

支持向量机(SVM)

from sklearn.svm import SVC
svc = SVC(kernel='linear')

朴素贝叶斯

from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()

KNN

from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()

无监督学习模型

主成分分析(PCA)

from sklearn.decomposition import PCA
pca = PCA(n_components=0.95)

k均值/K Means

from sklearn.cluster import KMeans
k_means = KMeans(n_clusters=3, random_state=0)

模型拟合

有监督学习

lr.fit(X, y)
knn.fit(X_train, y_train)
svc.fit(X_train, y_train)

无监督学习

k_means.fit(X_train)
pca_model = pca.fit_transform(X_train)

模型预测

有监督学习

y_pred = svc.predict(np.random.random((2,5)))
y_pred = lr.predict(X_test)
y_pred = knn.predict_proba(X_test))

无监督学习

y_pred = k_means.predict(X_test)

评估模型性能

分类指标

准确度

knn.score(X_test, y_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

分类报告

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred)))

混淆矩阵

from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred)))

回归指标

平均绝对误差

from sklearn.metrics import mean_absolute_error
y_true = [3, -0.5, 2])
mean_absolute_error(y_true, y_pred))

均方差

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred))

$R^2$分数

from sklearn.metrics import r2_score
r2_score(y_true, y_pred))

聚类指标

调整兰德系数

from sklearn.metrics import adjusted_rand_score
adjusted_rand_score(y_true, y_pred))

同质性/Homogeneity

from sklearn.metrics import homogeneity_score
homogeneity_score(y_true, y_pred))

调和平均指标/V-measure

from sklearn.metrics import v_measure_score
metrics.v_measure_score(y_true, y_pred))

交叉验证

print(cross_val_score(knn, X_train, y_train, cv=4))
print(cross_val_score(lr, X, y, cv=2))

模型调优

网格搜索

from sklearn.grid_search import GridSearchCV
params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]}
grid = GridSearchCV(estimator=knn,param_grid=params)
grid.fit(X_train, y_train)
print(grid.best_score_)
print(grid.best_estimator_.n_neighbors)

随机参数优化

from sklearn.grid_search import RandomizedSearchCV
params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
rsearch = RandomizedSearchCV(estimator=knn,
param_distributions=params,
cv=4,
n_iter=8,
random_state=5)
rsearch.fit(X_train, y_train)
print(rsearch.best_score_)

Sklearn 速查的更多相关文章

  1. 机器学习算法 Python&R 速查表

    sklearn实战-乳腺癌细胞数据挖掘( 博主亲自录制) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  2. 常用的14种HTTP状态码速查手册

    分类 1xx \> Information(信息) // 接收的请求正在处理 2xx \> Success(成功) // 请求正常处理完毕 3xx \> Redirection(重定 ...

  3. jQuery 常用速查

    jQuery 速查 基础 $("css 选择器") 选择元素,创建jquery对象 $("html字符串") 创建jquery对象 $(callback) $( ...

  4. 简明 Git 命令速查表(中文版)

    原文引用地址:https://github.com/flyhigher139/Git-Cheat-Sheet/blob/master/Git%20Cheat%20Sheet-Zh.md在Github上 ...

  5. 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册

    <zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...

  6. .htaccess下Flags速查表

    Flags是可选参数,当有多个标志同时出现时,彼此间以逗号分隔. 速查表: RewirteRule 标记 含义 描述 R Redirect 发出一个HTTP重定向 F Forbidden 禁止对URL ...

  7. IL指令速查

    名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推送到计算堆栈上. Add.Ovf.Un 将两个无符号整数值相加,执行溢出检查,并且 ...

  8. Linux命令速查手册,超详细Linux命令教程

    一.常用命令速查 ls cd pwd cat more less tail head cp scp mv mkdir rmdir touch rm ps kill top free clear tre ...

  9. 25个有用的和方便的 WordPress 速查手册

    如果你是 WordPress 开发人员,下载一些方便的 WordPress 备忘单可以在你需要的时候快速查找.下面这个列表,我们已经列出了25个有用的和方便的 WordPress 速查手册,赶紧收藏吧 ...

随机推荐

  1. session存取时 getOutputStream()和getWriter()问题

    情况1: 在使用httpResponse的getWriter()会写json是出现 getWriter() has already been called for this response,经我查看 ...

  2. ZCGL大数据平台日常运维问题与解决方法

    问题:HBase停止 解决方法:重新启动HBase,如下所示 表层问题:插入和查询HBase速度比较慢 排查一,查看HBase节点状态,发现正常运行: 排查二,查看访问HBase服务的状态,发现服务停 ...

  3. Xshell 5的快捷键

    Xshell 5的快捷键 1. 点击下图中的按钮查看快捷键: 2. 快捷键备忘录: 序号 功能 快捷键 备注 1 在窗口和撰写栏之间切换 Alt+I   2 全屏 Alt+Enter   3     ...

  4. js正则 - 限制用户名只能中文、字母和数字 , 不能包含特殊字符

    /^[\u4E00-\u9FA5A-Za-z0-9]+$/   

  5. 剑指offer 二叉树的后序遍历序列

    题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 思路:这题目有点特殊,主要在于序列为空的时候,不是 ...

  6. 注意重写类的equals()方法

    注意在java中在比较引用类型时==和原生的equals()方法比较的都是看它们否是同一个对象(说的更直白一点就是他们在内存的位置是否是一样的),但我们在真实世界中关注的往往只是其中的某个属性是否相等 ...

  7. Linux之文件传输

    本文借鉴<Linux命令大全> 1. bye命令 功能:终端FTP连线并结束程序 语法:bye 补充:在ftp模式下,输入bye即可中断目前的连线作业,并结束ftp的执行. 2. ftp命 ...

  8. 六种方式实现hibernate查询,及IDE推荐

      这些天过的好乱,也许是因为考完试了,心里有些松懈吧.也许是最近发生的事对我有些触动吧.感觉自己都已经不懂自己了.面对一些人的教导,我很感激.因为很多话都对我有非常大的帮助和启发,也让我除了做技术, ...

  9. echart 库 初始

    一.echart简介 Echarts (http://echarts.baidu.com/)是百度公司出品的,算是百度不可多得的良心之作.要彻底掌握Echarts,你需要掌握一点前端开发的知识,这些知 ...

  10. 小程序通过web-view实现与h5页面之间的交互

    在小程序端使用web-view内嵌网页,通过 src 携带参数,通过 @message 接收h5传回的数据 <template> <view> <web-view :sr ...