题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531

Problem Description
Archaeologists find ruins of Ancient ACM Civilization, and they want to rebuild it.

The ruins form a closed path on an x-y plane, which has n endpoints. The endpoints locate on (x1,y1), (x2,y2), …,(xn,yn) respectively. Endpoint i and endpoint i−1 are adjacent for 1<i≤n, also endpoint 1 and endpoint n are adjacent. Distances between any two adjacent endpoints are positive integers.

To rebuild, they need to build one cylindrical pillar at each endpoint, the radius of the pillar of endpoint i is ri. All the pillars perpendicular to the x-y plane, and the corresponding endpoint is on the centerline of it. We call two pillars are adjacent if and only if two corresponding endpoints are adjacent. For any two adjacent pillars, one must be tangent externally to another, otherwise it will violate the aesthetics of Ancient ACM Civilization. If two pillars are not adjacent, then there are no constraints, even if they overlap each other.

Note that ri must not be less than 0 since we cannot build a pillar with negative radius and pillars with zero radius are acceptable since those kind of pillars still exist in their neighbors.

You are given the coordinates of n endpoints. Your task is to find r1,r2,…,rn which makes sum of base area of all pillars as minimum as possible.

For example, if the endpoints are at (0,0), (11,0), (27,12), (5,12), we can choose (r1, r2, r3, r4)=(3.75, 7.25, 12.75, 9.25). The sum of base area equals to 3.752π+7.252π+12.752π+9.252π=988.816…. Note that we count the area of the overlapping parts multiple times.

If there are several possible to produce the minimum sum of base area, you may output any of them.

 
Input
The first line contains an integer t indicating the total number of test cases. The following lines describe a test case.

The first line of each case contains one positive integer n, the size of the closed path. Next n lines, each line consists of two integers (xi,yi) indicate the coordinate of the i-th endpoint.

1≤t≤100
3≤n≤104
|xi|,|yi|≤104
Distances between any two adjacent endpoints are positive integers.

 
Output
If such answer doesn't exist, then print on a single line "IMPOSSIBLE" (without the quotes). Otherwise, in the first line print the minimum sum of base area, and then print n lines, the i-th of them should contain a number ri, rounded to 2 digits after the decimal point.

If there are several possible ways to produce the minimum sum of base area, you may output any of them.

 
Sample Input
3
4
0 0
11 0
27 12
5 12
5
0 0
7 0
7 3
3 6
0 6
5
0 0
1 0
6 12
3 16
0 12
 
Sample Output
988.82
3.75
7.25
12.75
9.25
157.08
6.00
1.00
2.00
3.00
0.00
IMPOSSIBLE
 
Source
 
Recommend
hujie
题解:对于题目分析可得一些性质:
1:一个圆的半径确定,其他的圆的半径也随之确定.
2:对于n,分奇偶讨论,奇数情况下化简可得:若有解必有唯一解,否则无解.偶数情况下构造二次函数有一变元,从而转换为二次函数的极值问题.
3:限制:半径必须都>=0
#include <bits/stdc++.h>
#define met(a, b) memset(a, b, sizeof(a))
#define ll long long
#define ull unsigned long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef pair<int,int>P;
const int maxn=;
const double eps=1e-;
const double pi=acos(-);
P p[maxn];
double d[maxn],f[maxn];
double dist(P a,P b)
{
return sqrt((a.first-b.first)*(a.first-b.first)+(a.second-b.second)*(a.second-b.second));
}
int main()
{
int T;
cin>>T;
while(T--){
int n;
cin>>n;
for(int i=;i<=n;i++)cin>>p[i].first>>p[i].second;
for(int i=;i<=n;i++){
if(i==n)d[i]=dist(p[i],p[]);
else d[i]=dist(p[i],p[i+]);
}
double maxx=0x3f3f3f3f,minn=;//极值上下限
f[]=;
for(int i = ; i <=n ; i++)
{
f[i] = d[i-] - f[i-];
if(i%== && f[i] < maxx)//若为偶数点,则该圆的半径只能减小这么多(即第一个圆的半径只能增大这么多),更新最大值下限
{
maxx = f[i];
}
if(i%== && (-f[i]) > minn)//若为奇数点,且此时f[i]小与0,则必须第一个圆的半径更新为该值,更新最小值上限
{
minn = -f[i];
}
}
if(minn >= maxx + eps )//无解
{
printf("IMPOSSIBLE\n");
continue;
}
if(n%==){//奇数个点,有解则必有唯一解,否则无解
double x=;//第一个圆的半径x=(d1-d2+d3-d4...)/2,唯一解.
for(int i=;i<=n;i++){
if(i%==)x+=d[i];
else x-=d[i];
}
x/=;
if(x<=minn-eps||x>=maxx+eps){
cout<<"IMPOSSIBLE"<<endl;
continue;
}
double area=;
for(int i=;i<=n;i++){
if(i%==)area+=(f[i]+x)*(f[i]+x);
else area+=(f[i]-x)*(f[i]-x);
}
area*=pi;
printf("%.2f\n",area);
for(int i=;i<=n;i++){
if(i%==)printf("%.2f\n",f[i]+x);
else printf("%.2f\n",f[i]-x);
}
}
else{//偶数情况构造二次函数,y=a*x*x+b*x+c
double now=;
for(int i=;i<=n;i++){
if(i%==)now+=d[i];
else now-=d[i];
}
if(fabs(now)>eps||minn-maxx>eps){
cout<<"IMPOSSIBLE"<<endl;
continue;
}
double a=n;
double b=,c=;
for(int i=;i<=n;i++){
if(i%==){
b+=*f[i];
}
else{
b-=*f[i];
}
c+=f[i]*f[i];
}
double x=-b/(*a);
if(x<minn+eps)x=minn;
if(x>maxx-eps)x=maxx;
double area=a*x*x+b*x+c;
area*=pi;
printf("%.2f\n",area);
for(int i=;i<=n;i++){
if(i%==)printf("%.2f\n",f[i]+x);
else printf("%.2f\n",f[i]-x);
}
}
}
return ;
}

E - Rebuild UVALive - 7187 (二次函数极值问题)的更多相关文章

  1. (转载)SVM-基础(五)

    作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法.确确实实只是简单介绍一 ...

  2. SVM个人学习总结

    SVM个人学习总结 如题,本文是对SVM学习总结,主要目的是梳理SVM推导过程,以及记录一些个人理解. 1.主要参考资料 [1]Corres C. Support vector networks[J] ...

  3. 2015ACM/ICPC亚洲区长春站 E hdu 5531 Rebuild

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  4. HDU 5531 Rebuild (2015长春现场赛,计算几何+三分法)

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  5. Visual Studio 中 Build 和 Rebuild 的区别

    因为之前写的程序比较小,编译起来比较快,所以一直都没有太在意 Build 和 Rebuild 之间的区别,后来发现两个还是有很大不同. Build 只针对在上次编译之后更改过的文件进行编译,在项目比较 ...

  6. 解决 node-gyp rebuild 卡住 的问题

    node-gyp在编译前会首先尝试下载node的headers文件,像这样: gyp http GET https://nodejs.org/download/release/v6.8.1/node- ...

  7. AndroidStudio中make Project、clean Project、Rebuild Project的区别

    1.Make Project:编译Project下所有Module,一般是自上次编译后Project下有更新的文件,不生成apk. 2.Make Selected Modules:编译指定的Modul ...

  8. Rebuild Instance 操作详解 - 每天5分钟玩转 OpenStack(37)

    上一节我们讨论了 snapshot,snapshot 的一个重要作用是对 instance 做备份. 如果 instance 损坏了,可以通过 snapshot 恢复,这个恢复的操作就是 Rebuil ...

  9. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

随机推荐

  1. su鉴定故障 普通用户无法切换回root用户处理-centos7网卡速率设置

    1.1 检查/etc目录下passwd的权限[root@dev /]# ll/etc/passwd-rw-r--r--. 1 root root 1975 5月  27 06:04/etc/passw ...

  2. 51nod 1392:装盒子 匈牙利+贪心

    1392 装盒子 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 有n个长方形盒子,第i个长度为Li,宽度为Wi,我们需要把他们套放.注意一个盒子 ...

  3. sql优化从300秒到7秒

    原始sql select b.jd 街道,b.rglm 楼宇,zzrl 楼宇编号,count(oname) 入楼企业总数, (select count(oname) from ${tablename} ...

  4. idea 2019.3 最新破解补丁和激活码,可破解至2089年!

    链接:https://blog.csdn.net/qq_42914528/article/details/85617901 上面方法失效了,请尝试以下方式激活(2020.1.6更新) idea激活码( ...

  5. pyecharts绘制地图可视化

    pyecharts:官方文档 我们这里使用pyecharts模块进行绘图. pyecharts 项目包含了一系列的地理地图数据,这些数据或者已经内置,或者需要额外安装和加载,我们需要下载下面六个包. ...

  6. centos7-vsftp(虚拟用户)

    要求如下: 1.所有用户主目录为/var/www宿主为virtual用户: 2.ftpuser1用户只能下载不能上传以及删除文件重命名操作: 3.ftpuser2可以下载与上传文件以及删除重命名操作: ...

  7. centos系统将shell脚本改成systemctl启动的形式

    说明: CentOS 7的服务systemctl脚本存放在:/usr/lib/systemd/,有系统(system)和用户(user)之分,像需要开机不登陆就能运行的程序,就将程序存在系统服务里,即 ...

  8. vue样式的动态绑定

    true显示样式,flase不显示 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...

  9. SQL基础教程(第2版)第3章 聚合与排序:3-2 对表进行分组

    第3章 聚合与排序:3-2 对表进行分组 ● 使用GROUP BY子句可以像切蛋糕那样将表分割.通过使用聚合函数和GROUP BY子句,可以根据“商品种类”或者“登记日期”等将表分割后再进行汇总.● ...

  10. JS基础——脚本位置、数据类型、函数作用域

    (一)脚本位置 JavaScript是嵌套到浏览器里的脚本语言:可放在3个位置: 1.写在头部(head里) <head>    <meta charset="UTF-8& ...