题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531

Problem Description
Archaeologists find ruins of Ancient ACM Civilization, and they want to rebuild it.

The ruins form a closed path on an x-y plane, which has n endpoints. The endpoints locate on (x1,y1), (x2,y2), …,(xn,yn) respectively. Endpoint i and endpoint i−1 are adjacent for 1<i≤n, also endpoint 1 and endpoint n are adjacent. Distances between any two adjacent endpoints are positive integers.

To rebuild, they need to build one cylindrical pillar at each endpoint, the radius of the pillar of endpoint i is ri. All the pillars perpendicular to the x-y plane, and the corresponding endpoint is on the centerline of it. We call two pillars are adjacent if and only if two corresponding endpoints are adjacent. For any two adjacent pillars, one must be tangent externally to another, otherwise it will violate the aesthetics of Ancient ACM Civilization. If two pillars are not adjacent, then there are no constraints, even if they overlap each other.

Note that ri must not be less than 0 since we cannot build a pillar with negative radius and pillars with zero radius are acceptable since those kind of pillars still exist in their neighbors.

You are given the coordinates of n endpoints. Your task is to find r1,r2,…,rn which makes sum of base area of all pillars as minimum as possible.

For example, if the endpoints are at (0,0), (11,0), (27,12), (5,12), we can choose (r1, r2, r3, r4)=(3.75, 7.25, 12.75, 9.25). The sum of base area equals to 3.752π+7.252π+12.752π+9.252π=988.816…. Note that we count the area of the overlapping parts multiple times.

If there are several possible to produce the minimum sum of base area, you may output any of them.

 
Input
The first line contains an integer t indicating the total number of test cases. The following lines describe a test case.

The first line of each case contains one positive integer n, the size of the closed path. Next n lines, each line consists of two integers (xi,yi) indicate the coordinate of the i-th endpoint.

1≤t≤100
3≤n≤104
|xi|,|yi|≤104
Distances between any two adjacent endpoints are positive integers.

 
Output
If such answer doesn't exist, then print on a single line "IMPOSSIBLE" (without the quotes). Otherwise, in the first line print the minimum sum of base area, and then print n lines, the i-th of them should contain a number ri, rounded to 2 digits after the decimal point.

If there are several possible ways to produce the minimum sum of base area, you may output any of them.

 
Sample Input
3
4
0 0
11 0
27 12
5 12
5
0 0
7 0
7 3
3 6
0 6
5
0 0
1 0
6 12
3 16
0 12
 
Sample Output
988.82
3.75
7.25
12.75
9.25
157.08
6.00
1.00
2.00
3.00
0.00
IMPOSSIBLE
 
Source
 
Recommend
hujie
题解:对于题目分析可得一些性质:
1:一个圆的半径确定,其他的圆的半径也随之确定.
2:对于n,分奇偶讨论,奇数情况下化简可得:若有解必有唯一解,否则无解.偶数情况下构造二次函数有一变元,从而转换为二次函数的极值问题.
3:限制:半径必须都>=0
#include <bits/stdc++.h>
#define met(a, b) memset(a, b, sizeof(a))
#define ll long long
#define ull unsigned long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef pair<int,int>P;
const int maxn=;
const double eps=1e-;
const double pi=acos(-);
P p[maxn];
double d[maxn],f[maxn];
double dist(P a,P b)
{
return sqrt((a.first-b.first)*(a.first-b.first)+(a.second-b.second)*(a.second-b.second));
}
int main()
{
int T;
cin>>T;
while(T--){
int n;
cin>>n;
for(int i=;i<=n;i++)cin>>p[i].first>>p[i].second;
for(int i=;i<=n;i++){
if(i==n)d[i]=dist(p[i],p[]);
else d[i]=dist(p[i],p[i+]);
}
double maxx=0x3f3f3f3f,minn=;//极值上下限
f[]=;
for(int i = ; i <=n ; i++)
{
f[i] = d[i-] - f[i-];
if(i%== && f[i] < maxx)//若为偶数点,则该圆的半径只能减小这么多(即第一个圆的半径只能增大这么多),更新最大值下限
{
maxx = f[i];
}
if(i%== && (-f[i]) > minn)//若为奇数点,且此时f[i]小与0,则必须第一个圆的半径更新为该值,更新最小值上限
{
minn = -f[i];
}
}
if(minn >= maxx + eps )//无解
{
printf("IMPOSSIBLE\n");
continue;
}
if(n%==){//奇数个点,有解则必有唯一解,否则无解
double x=;//第一个圆的半径x=(d1-d2+d3-d4...)/2,唯一解.
for(int i=;i<=n;i++){
if(i%==)x+=d[i];
else x-=d[i];
}
x/=;
if(x<=minn-eps||x>=maxx+eps){
cout<<"IMPOSSIBLE"<<endl;
continue;
}
double area=;
for(int i=;i<=n;i++){
if(i%==)area+=(f[i]+x)*(f[i]+x);
else area+=(f[i]-x)*(f[i]-x);
}
area*=pi;
printf("%.2f\n",area);
for(int i=;i<=n;i++){
if(i%==)printf("%.2f\n",f[i]+x);
else printf("%.2f\n",f[i]-x);
}
}
else{//偶数情况构造二次函数,y=a*x*x+b*x+c
double now=;
for(int i=;i<=n;i++){
if(i%==)now+=d[i];
else now-=d[i];
}
if(fabs(now)>eps||minn-maxx>eps){
cout<<"IMPOSSIBLE"<<endl;
continue;
}
double a=n;
double b=,c=;
for(int i=;i<=n;i++){
if(i%==){
b+=*f[i];
}
else{
b-=*f[i];
}
c+=f[i]*f[i];
}
double x=-b/(*a);
if(x<minn+eps)x=minn;
if(x>maxx-eps)x=maxx;
double area=a*x*x+b*x+c;
area*=pi;
printf("%.2f\n",area);
for(int i=;i<=n;i++){
if(i%==)printf("%.2f\n",f[i]+x);
else printf("%.2f\n",f[i]-x);
}
}
}
return ;
}

E - Rebuild UVALive - 7187 (二次函数极值问题)的更多相关文章

  1. (转载)SVM-基础(五)

    作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法.确确实实只是简单介绍一 ...

  2. SVM个人学习总结

    SVM个人学习总结 如题,本文是对SVM学习总结,主要目的是梳理SVM推导过程,以及记录一些个人理解. 1.主要参考资料 [1]Corres C. Support vector networks[J] ...

  3. 2015ACM/ICPC亚洲区长春站 E hdu 5531 Rebuild

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  4. HDU 5531 Rebuild (2015长春现场赛,计算几何+三分法)

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  5. Visual Studio 中 Build 和 Rebuild 的区别

    因为之前写的程序比较小,编译起来比较快,所以一直都没有太在意 Build 和 Rebuild 之间的区别,后来发现两个还是有很大不同. Build 只针对在上次编译之后更改过的文件进行编译,在项目比较 ...

  6. 解决 node-gyp rebuild 卡住 的问题

    node-gyp在编译前会首先尝试下载node的headers文件,像这样: gyp http GET https://nodejs.org/download/release/v6.8.1/node- ...

  7. AndroidStudio中make Project、clean Project、Rebuild Project的区别

    1.Make Project:编译Project下所有Module,一般是自上次编译后Project下有更新的文件,不生成apk. 2.Make Selected Modules:编译指定的Modul ...

  8. Rebuild Instance 操作详解 - 每天5分钟玩转 OpenStack(37)

    上一节我们讨论了 snapshot,snapshot 的一个重要作用是对 instance 做备份. 如果 instance 损坏了,可以通过 snapshot 恢复,这个恢复的操作就是 Rebuil ...

  9. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

随机推荐

  1. NRF52811-QCAA 蓝牙5.1芯片资料解析

    为了满足市场需求Nordic 宣布推出nRF52811系统级芯片(SoC),这个全功能无线连接解决方案支持蓝牙5.1 测向(Direction Finding)功能和一系列流行低功耗无线协议,用于智能 ...

  2. Ubuntu 安装VirtualBox 虚拟机

    转载 1.终端命令 编辑sources.list ? 1 sudo gedit /etc/apt/sources.list 2.添加 软件源 将下面的地址加入sources.list 的末尾,保存并退 ...

  3. cf 760B.Frodo and pillows

    二分,判断条件就是最小情况(设当前k位取x)比剩余值(m-x)要小.(貌似又做麻烦了2333) #include<bits/stdc++.h> #define LL long long # ...

  4. 刷题48. Rotate Image

    一.题目说明 题目是48. Rotate Image,简而言之就是矩阵顺时针旋转90度.不允许使用额外的矩阵. 经过观察(写一个矩阵,多看几遍就知道了),旋转90度后: 第1行变为len-1列(最后一 ...

  5. 路飞学城—Python爬虫实战密训班 第三章

    路飞学城—Python爬虫实战密训班 第三章 一.scrapy-redis插件实现简单分布式爬虫 scrapy-redis插件用于将scrapy和redis结合实现简单分布式爬虫: - 定义调度器 - ...

  6. <style scoped >中使用深度选择器影响子组件

    摘自:https://blog.csdn.net/zhouzuoluo/article/details/95593143 <style scoped >中使用深度选择器影响子组件 在< ...

  7. promise核心 为什么用promise

    为什么要用promise 1.使用纯回调函数 先指定回调函数,再启动异步任务 答 1.指定回调函数的方式更加灵活 可以在执行任务前,中,后 2.支持链式调用,解决回调地狱问题 什么是回调地狱:回调函数 ...

  8. POJ 1459:Power Network 能源网络

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25414   Accepted: 13247 D ...

  9. Python Learning Day5

    Response响应 import requests response = requests.get('https://baidu.com') # response响应 print(response. ...

  10. Cookie API和记录上次来访时间

    1.什么是Cookie? Cookie是一种会话技术,用千将会话过程中的数据保存到用户的浏览器中,从而使浏览器和服务器可以更好地进行数据交互. 在现实生活中,当顾客在购物时,商城经常会赠送顾客一张会员 ...