Description:

有 \(n\) 中烹饪方法和 \(m\) 种食材,要求:

  • 至少做一种菜
  • 所有菜的烹饪方法各不相同
  • 同种食材的菜的数量不能超过总菜数的一半

求做菜的方案数。

Solution1:考虑 DP

先容斥一下,答案为忽略第三个条件所得的方案数减去每一种食材超过一半的方案数之和。

忽略掉第三个条件之后答案显然是

\[\prod_{i=1}^n(1+\sum_{j=1}^m a_{i,j})-1
\]

减去 1 是去掉一道菜都不做的方案。

枚举每一列超过一半的情况,显然,除这一列外,其他 \(n-1\) 列是一样的。那么对于第 \(col\) 列,设 \(f_{i,j,k}\) 表示前 \(i\) 行,第 \(col\) 列选 \(j\) 个且其他列选 \(k\) 个的方案数。则:

\[f_{i,j,k} = f_{i-1,j,k}\text{(不选)}+a_{i,col}*f_{i-1,j-1,k}+(s_i-a_{i,col})*f_{i,-1,j,k-1}
\]

此时的复杂度是 ,\(O(m)\) 的枚举 \(col\) * \(O(n^3)\) 的 \(DP\), = \(O(mn^3)\) ,可以得到 84pts 的好成绩了

Code:

#include<bits/stdc++.h>

using namespace std;
typedef long long ll; const int N = 101;
const int M = 2001;
const int mod = 998244353;
ll n,m;
ll s[N],a[N][M],f[N][N][N];
ll ans=1; void init()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
scanf("%lld",&a[i][j]);
s[i]=(s[i]+a[i][j])%mod;
}
ans=(ans*(s[i]+1))%mod;
}
ans=(mod-1+ans)%mod;
} int main()
{
init();
for(int col=1;col<=m;++col)
{
memset(f,0,sizeof(f));
f[0][0][0]=1;
for(int i=1;i<=n;++i)
{
for(int j=0;j<=i;++j)
{
for(int k=0;k<=i-j;++k)
{
f[i][j][k]=f[i-1][j][k]+f[i-1][j-1][k]*a[i][col]+f[i-1][j][k-1]*(s[i]-a[i][col]);
f[i][j][k]=(f[i][j][k]%mod+mod)%mod;
}
}
} for(int j=1;j<=n;++j)
{
for(int k=0;k<=n-j;++k)
{
if(k<j) ans=((ans-f[n][j][k])%mod+mod)%mod;
}
}
}
printf("%lld\n",ans);
return 0;
}

Solution2:考虑优化

然后我们发现我们并不关心j和k的具体值。我们只关心他们的差。所以我们可以把后两维压缩成一维。

设 \(f_{i,j}\) 表示前 \(i\) 行,第 \(col\) 列比其他列多选 \(j\) 个的方案数。则:

\[f_{i,j} = f_{i-1,j}\text{(不选)}+a_{i,col}*f_{i-1,j-1}+(s_i-a_{i,col})*f_{i,-1,j+1}
\]

此时的复杂度是 ,\(O(m)\) 的枚举 \(col\) * \(O(n^2)\) 的 \(DP\), = \(O(mn^2)\) ,可以得到 100pts 的好成绩了

这里有一个小技巧就是把每个j都加上n,避免数组负下标的出现。

Code:

#include<bits/stdc++.h>

using namespace std;
typedef long long ll; const int N = 101;
const int M = 2001;
const int mod = 998244353;
ll n,m;
ll s[N],a[N][M],f[N][N*2];
ll ans=1; void init()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
scanf("%lld",&a[i][j]);
s[i]=(s[i]+a[i][j])%mod;
}
ans=(ans*(s[i]+1))%mod;
}
ans=(mod-1+ans)%mod;
} int main()
{
init();
for(int col=1;col<=m;++col)
{
memset(f,0,sizeof(f));
f[0][n]=1;
for(int i=1;i<=n;++i)
{
for(int j=n-i;j<=n+i;++j)//注意dp的范围!
{
f[i][j]=f[i-1][j]+f[i-1][j-1]*a[i][col]+f[i-1][j+1]*(s[i]-a[i][col]);
f[i][j]=(f[i][j]%mod+mod)%mod;
}
} for(int j=1;j<=n;++j)
{
ans=((ans-f[n][n+j])%mod+mod)%mod;
}
}
printf("%lld\n",ans);
return 0;
}

Question:

DP的取值范围问题还是不清楚。

CSP2019 Emiya 家今天的饭的更多相关文章

  1. CSP2019 Emiya 家今天的饭 题解

    这题在考场上只会O(n^3 m),拿了84分.. 先讲84分,考虑容斥,用总方案减去不合法方案,也就是枚举每一种食材,求用它做超过\(\lfloor \frac{k}{2} \rfloor\) 道菜的 ...

  2. csp2019 Emiya家今天的饭题解

    qwq 由于窝太菜了,实在是不会,所以在题解的帮助下过掉了这道题. 写此博客来整理一下思路 正文 传送 简化一下题意:现在有\(n\)行\(m\)列数,选\(k\)个数的合法方案需满足: 1.一行最多 ...

  3. 洛谷P5664 Emiya 家今天的饭 问题分析

    首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...

  4. 洛谷P5664 Emiya 家今天的饭 题解 动态规划

    首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...

  5. 【NOIP/CSP2019】D2T1 Emiya 家今天的饭

    这个D2T1有点难度啊 原题: 花了我一下午的时间,作为D2T1的确反常 条件很奇怪,感觉不太直观,于是看数据范围先写了个暴力 写暴力的时候我就注意到了之前没有仔细想过的点,烹饪方式必须不同 虽然a很 ...

  6. 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】

    题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...

  7. 【CSP-S 2019】D2T1 Emiya 家今天的饭

    Description 传送门 Solution 算法1 32pts 爆搜,复杂度\(O((m+1)^n)\) 算法2 84pts 裸的dp,复杂度\(O(n^3m)\) 首先有一个显然的性质要知道: ...

  8. Emiya 家今天的饭

    \(dp_{i,j,k}\)表示前\(i\)种烹饪方法,假设最多的是食材\(j\),食材\(j\)比其他食材多\(k\)次出现 其中\(i \in [1,n],j \in [1,m],k \in [- ...

  9. 【JZOJ6433】【luoguP5664】【CSP-S2019】Emiya 家今天的饭

    description analysis 首先可以知道不符合要求的食材仅有一个,于是可以容斥拿总方案数减去选不合法食材的不合法方案数 枚举选取哪一个不合法食材,设\(f[i][j]\)表示到第\(i\ ...

随机推荐

  1. Python 报错 AttributeError: module 'django.db.models' has no attribute 'SubfieldBase'

    AttributeError: module 'django.db.models' has no attribute 'SubfieldBase' http://www.guanggua.com/qu ...

  2. stm32控制步进电机加减速

    实习公司项目需要控制步进电机,电机方面主要包括控制运动.加减速.限位.下面介绍一下在电机控制方面的心得,由于对于电机的控制不需要很精确,并且自身能力有限,相比于大牛有很大的差距. 1.需要实现的功能 ...

  3. 红帽RHCE培训-课程3笔记内容2

    9 NFS 9.1 NFS基础 目标 .使用NFS将文件系统连接到客户端,并使用IP 地址控制访问 .使用NFS将文件系统连接到客户端,并使用kerberos 来控制访问 .配置用户名和密码控制访问的 ...

  4. mybatis批量插入和更新

    批量插入 <insert id="add" parameterType="java.util.List"> insert all <forea ...

  5. localhost: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).

    在开启hadoop时候报错:localhost: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password). 此时 ssh ...

  6. 数制的运用-CodeForces - 535B

    题解: 因为每一位只可能是4或者7,可以类比二进制的思想. 基数为2,每一位的权值为2i-1:数字4表示的大小为1*2i-1:数字7表示的大小为2*2i-1. 将给定的n按照这种方法进行分解,求和.即 ...

  7. 外置ADC

    美信关于如何简化微控制器与温度传感器的接口设计?: 一般外置ADC与单片机UC之间通过SPI或SMBUS接口通信 当IO口比较紧张时可以选择脉冲或频率方波正比与测量值输出的外置ADC,此时也可以实现光 ...

  8. dom4j+反射实现bean与xml的相互转换

    由于目前在工作中一直用的dom4j+反射实现bean与xml的相互转换,记录一下,如果有不正确的地方欢迎大家指正~~~ 一.反射机制 在此工具类中使用到了反射技术,所以提前也看了一些知识点,例如:ht ...

  9. LeetCode练题——67. Add Binary

    1.题目 67. Add Binary——easy Given two binary strings, return their sum (also a binary string). The inp ...

  10. IDEA中使用Springboot+SSM的踩坑记(一)

    今天由于电脑无限蓝屏,不知怎么把我IDEA里面破解过的一些东西给搞没了,包括IDEA本体和JRebel,照着原来的方法破解连本体都开不起来了(哭死),索性下了个最新版来用,结果JRebel还是破解不得 ...