GDOI#345. 送礼物「JSOI 2015」01分数规划+RMQ
题目描述
JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物。萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成一列,而且相邻的礼物之间有一种神秘的美感。于是,JYY决定从中挑选连续的一些礼物,但究竟选哪些呢?假设礼品店一共有N件礼物排成一列,每件礼物都有它的美观度。排在第i(1\leq i\leq N1≤i≤N)个位置的礼物美观度为正整数A_iAi。JYY决定选出其中连续的一段,即编号为礼物i,i+1,…,j-1,ji,i+1,…,j−1,j的礼物。选出这些礼物的美观程度定义为:
(M(i,j)-m(i,j))/(j-i+k)(M(i,j)−m(i,j))/(j−i+k),其中M(i,j)M(i,j)表示max\{A_i,A_{i+1}....A_j\}max{Ai,Ai+1....Aj},m(i,j)m(i,j)表示min\{A_i,A_{i+1}....A_j\}min{Ai,Ai+1....Aj},K为给定的正整数。
由于不能显得太小气,所以JYY所选礼物的件数最少为L件;同时,选得太多也不好拿,因此礼物最多选R件。JYY应该如何选择,才能得到最大的美观程度?由于礼物实在太多挑花眼,JYY打算把这个问题交给会编程的你。
法一:用单调暴力求解,然后你就可以得到宝贵的20分(本人亲自实验)。
法二(正解):
若区间长度等于规定L,就直接用单调队列维护长度为L的区间的最大值和最小值,分别计算每个区间,用一个ans记录最大值。
若区间大于L,对于一个区间[l, r]很明显可以发现最优的取法是在A[l]为最小值, A[r]为最大值或A[l]为最小值,A[r]为最大值。
然后开始二分答案。
judge函数:
1, A[l] > A[r], 要A[l] - A[r] > (r - l + 1) * mid; 所以若max{A[i] + i * mid - (A[j] - j * mid) - k * mid} >= 0则mid可以更大
2,若A[l] < A[r] 同理,反过来就行。
所有A[i] + i * mid, A[j] - j * mid用单调队列来维护。
#include <bits/stdc++.h>
using namespace std;
const long long MAX = ;
const double INF = 1e9;
long long t, n, k, l, r;
long long a[MAX], q1[MAX], q2[MAX], q[MAX];
double val[MAX];
double ans;
//读入优化
double read() {
double ret = , f = ;
char ch = getchar();
while ('' > ch || ch > '') {
if (ch == '-') f = -;
ch = getchar();
}
while ('' <= ch && ch <= '') {
ret = ret * + ch - '';
ch = getchar();
}
return ret * f;
}
//判断
bool judge(double m) {
double ret = -INF;
for (long long i = ; i <= n; i++) {
val[i] = a[i] - m * i;
}
long long head = , tail = ;
for (long long i = l + ; i <= n; i++) {
while (head <= tail && i - q[head] >= r) head++;
while (head <= tail && val[q[tail]] >= val[i - l]) tail--;
q[++tail] = i - l;
ret = max(ret, val[i] - val[q[head]]);
}
for (long long i = ; i <= n; i++) {
val[i] = a[i] + m * i;
}
head = , tail = ;
for (long long i = n - l; i >= ; i--) {
while (head <= tail && q[head] - i >= r) head++;
while (head <= tail && val[q[tail]] >= val[i + l]) tail--;
q[++tail] = i + l;
ret = max(ret, val[i] - val[q[head]]);
}
//k是题目给的常数
return ret >= k * m;
}
int main() {
t = read();
while (t--) {
ans = -INF;
n = read(), k = read(), l = read(), r = read();
for (long long i = ; i <= n; i++) a[i] = read();
long long h1 = , h2 = , t1 = , t2 = ;
for (long long i = ; i < l; i++) {
while (h1 <= t1 && a[q1[t1]] >= a[i]) t1--;
while (h2 <= t2 && a[q2[t2]] <= a[i]) t2--;
q1[++t1] = q2[++t2] = i;
}
for (long long i = ; i <= n; i++) {
while (h1 <= t1 && i - q1[h1] >= l) h1++;
while (h2 <= t2 && i - q2[h2] >= l) h2++;
while (h1 <= t1 && a[q1[t1]] >= a[i]) t1--;
while (h2 <= t2 && a[q2[t2]] <= a[i]) t2--;
q1[++t1] = q2[++t2] = i;
ans = max(ans, 1.0 * (a[q2[h2]] - a[q1[h1]]) / (l + k - ));
}
//注意精度
double l = , r = ;
while (r - l >= 0.000001) {
double mid = (l + r) / ;
if (judge(mid)) ans = max(ans, mid), l = mid + 0.000001;
else r = mid - 0.000001;
}
printf("%.4lf\n", ans);
}
return ;
}
GDOI#345. 送礼物「JSOI 2015」01分数规划+RMQ的更多相关文章
- 送礼物「JSOI 2015」RMQ+01分数规划
[题目描述] 礼品店一共有N件礼物排成一列,每件礼物都有它的美观度.排在第\(i(1\leq i\leq N)\)个位置的礼物美观度为正整数\(A_I\).JYY决定选出其中连续的一段,即编号为礼物\ ...
- LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配
#2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表)
[BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表) 题面 给出n,k,l,r和序列a,要求从a中选一段连续的区间[i,j]出来,使得M(i,j)-m(i,j)/(j-i+k) ...
- P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表
P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...
- [JSOI 2016] 最佳团体(树形背包+01分数规划)
4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2003 Solved: 790[Submit][Statu ...
- 【BZOJ4476】[Jsoi2015]送礼物 分数规划+RMQ
[BZOJ4476][Jsoi2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成 ...
- 极光的开源礼物「Aurora IMUI」
今日,奉上我们拙作,仅为开源世界献出绵薄之力. Aurora IMUI,一个通用的即时通讯(IM)UI 库.不局限于任何 IM SDK. 本 UI 库提供了消息列表.输入视图等常用组件. 初心 过去的 ...
- 「HNOI 2015」实验比较
\(Description\) 有\(n\)个元素,对于每个元素\(x_i\)最多知道一个形如\(x_j < x_i\)或\(x_j=x_i\)的条件,问有多少合法的序列.合法的序列满足每个元素 ...
- 「HNOI 2015」亚瑟王
\(Description\) 有\(n\)张卡牌,每一张卡牌有\(p_i\)的概率发动,并造成\(d_i\)点伤害.一共有\(r\)轮,每一轮按照编号从小到大依次考虑,如果这张牌已经发动过则跳过该牌 ...
随机推荐
- Selenium+webdriver自动化登陆QQ邮箱并发送邮件
1.关于selenium Selenium的主要功能包括:(1)测试与浏览器的兼容性:测试应用程序能否兼容工作在不同浏览器和操作系统之上.(2)测试系统功能:录制用例自动生成测试脚本,用于回归功能测 ...
- python学习 第一章(说不定会有第零章呢)one day
------------恢复内容开始------------ 一.啥是python python是吉尔·范罗苏姆于1989年开发的一个新的脚本解释程序,是ABC语言的一种继承. 二.python的特点 ...
- day21-Python运维开发基础(单个字符匹配 / 多字符匹配)
1. 正则表达式(单个字符匹配) # ### 正则表达式 => 单个字符匹配 import re """ lst = re.findall(正则表达式,字符串) & ...
- Codeforces Round #588 (Div. 2)C(思维,暴力)
#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;int a[27],b[27];int vis ...
- Python 基础之面向对象初识与类的封装
一.面向对象类的初识 1.类的定义 #三种方式:#1.class MyClass: pass #2.推荐class MyClass(): pass #3.class MyClass(obj ...
- linux下的文件操作
彻底删除文件 rm -rf + [文件目录 可相对可绝对] 是彻底删除而且linux无回收站 创建文件 touch + [文件名] 创建文件夹 mkdir + [文件夹名] 文件提权:chmod 77 ...
- Vue二次精度随笔(1)
1.button.input标签的disabled属性 该标签可以控制按钮是否可用,如果他的值为以上几种的话,则他都不会在标签上渲染出这个属性,一旦这个属性出现的话,就说明他是禁用的 2.移除动态绑定 ...
- 079、Java数组之数组的静态初始化
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- 5.4 Linux 安装2个tomcat
Linux系统下怎样配置多个Tomcat同时运行呢,首先第一个tomcat配置不变,然后修改第二个tomcat启动的脚本 拷贝第一个tomcat的目录到第二个tomcat目录 [root@eshop- ...
- 三级联动下拉列表——php 、Ajax
主页面:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF- ...