SciPy线性代数包是使用优化的ATLAS LAPACK和BLAS库构建的,具有高效的线性代数运算能力。

线性代数包里的函数,操作对象都是二维数组。

SciPy.linalg 与 NumPy.linalg

与NumPy.linalg相比,scipy.linalg除了包含numpy.linalg中的所有函数,还具有numpy.linalg中没有的高级功能。

线性方程组求解

scipy.linalg.solve 函数可用于解线性方程。例如,对于线性方程$a * x + b * y = z$,求出未知数x, y值。

示例

解下面的联立方程组:

$$

x + 3y + 5z = 10 \

2x + 5y + z = 8 \

2x + 3y + 8z = 3

$$

上面的方程组,可以用矩阵表示为:

$$

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right] =

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

$$

利用矩阵求解上面方程组,如下图所示:

$$

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right]

=

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]^{-1}

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

= \frac{1}{25}

\left[

\begin{matrix}

-232 \

129 \

19

\end{matrix}

\right]

=

\left[

\begin{matrix}

-9.28 \

5.16 \

0.76

\end{matrix}

\right]

$$

下面我们使用scipy来求解。

scipy.linalg.solve函数接受两个输入,数组a和数组b,数组a表示系数,数组b表示等号右侧值,求出的解将会放在一个数组里返回。

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
b = np.array([10, 8, 3]) # 求解
x = linalg.solve(a, b) # 输出解值
print (x)

输出

[-9.28  5.16  0.76]

计算行列式

矩阵A的行列式表示为$|A|$,行列式计算是线性代数中的常见运算。

SciPy中,可以使用det()函数计算行列式,它接受一个矩阵作为输入,返回一个标量值,即该矩阵的行列式值。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 计算行列式
x = linalg.det(A) # 输出结果
print (x)

输出

-4.0

求取特征值与特征向量

求取矩阵的特征值、特征向量,也是线性代数中的常见计算。

通常,可以根据下面的关系,求取矩阵(A)的特征值(λ)、特征向量(v):

$$ Av = λv $$

scipy.linalg.eig 函数可用于计算特征值与特征向量,函数返回特征值和特征向量。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 求解
l, v = linalg.eig(A) # 打印特征值
print('特征值')
print (l) # 打印特征向量
print('特征向量')
print (v)

上面的程序将生成以下输出。

特征值
[-0.35234996+0.j 11.35234996+0.j]
特征向量
[[-0.76642628 -0.43192981]
[ 0.64233228 -0.90190722]]

SVD奇异值分解

奇异值分解(SVD)是现在比较常见的算法之一,也是数据挖掘工程师、算法工程师必备的技能之一。 假设A是一个$M×N$的矩阵,那么通过矩阵分解将会得到$U,Σ,VT$(V的转置)三个矩阵,其中U是一个$M×M$的方阵,被称为左奇异向量,方阵里面的向量是正交的;Σ是一个$M×N$的对角矩阵,除了对角线的元素其他都是0,对角线上的值称为奇异值;$VT$(V的转置)是一个$N×N$的矩阵,被称为右奇异向量,方阵里面的向量也都是正交的。

$$ A_{m\times{n}} = U_{m\times{m}} Σ_{m\times{n}} V_{n\times{n}}^T$$

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2) # 输出原矩阵
print('原矩阵')
print(a) # 求解
U, s, Vh = linalg.svd(a) # 输出结果
print('奇异值分解')
print(U, "#U")
print(Vh, "#Vh")
print(s, "#s")

上面的程序将生成以下输出。

原矩阵
[[ 1.81840014+0.16615057j -0.47446573-2.36327076j]
[-0.19366846-0.44489565j -0.03227288+0.02260894j]
[-0.91921239-0.99340761j -1.33606096+0.40858722j]]
奇异值分解
[[-0.84399035+0.03548862j -0.1574924 +0.44602345j 0.08723906-0.23466874j]
[ 0.03893388+0.08672055j -0.19156838-0.45118633j -0.02718865-0.86600053j]
[ 0.23121352+0.47320699j -0.71944217+0.13562682j 0.41089761+0.13336765j]] #U
[[-0.63461867+0.j 0.05670247+0.77074248j]
[ 0.77282543+0.j 0.04656219+0.63290822j]] #Vh
[3.55734783 0.7144458 ] #s

SciPy 线性代数的更多相关文章

  1. scipy科学计算库

    特定函数 例贝塞尔函数: 积分 quad,dblquad,tplquad对应单重积分,双重积分,三重积分 from scipy.integrate import quad,dblquad,tplqua ...

  2. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  3. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 常量

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. Atcoder Grand Contest 039B(思维,BFS)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;int col[207],s[207],n;c ...

  2. selected中第一项 请选择,隐藏

    如何做到selected 类似input的提示语  placeholder效果. <select class="wyj_dbfs"> <option style= ...

  3. 入门项目数字手写体识别:使用Keras完成CNN模型搭建(重要)

    摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别. ...

  4. C++运算符重载复习

    本人理解运算符重载实质 就类似函数重载   运算符重载都可以写成一个函数 里面传入参数 来调用 运算符重载不是必须的 但是重载后会方便很多. 小例子 一个类实现 ++  和+某个数重载 大于号重载  ...

  5. centos上正式环境邮件发送失败问题

    用celery异步发送邮件的时候遇到一个问题: 能接收到任务,但是就是执行不了, 也不报错 发现可能是settIngs.py里设置的端口有问题, 现在设置的端口是25, 改成465, 并且把ssl打开 ...

  6. Servlet 学习(四)

    HTTP 响应的构成1.HTTP 响应行: 协议.状态.描述 HTTP 1.1 中定义的状态代码 100-199 是信息性代码,标示客户应该采取的其它动作 200-299 表示请求成功 300-399 ...

  7. 都客仿站高手已注册旗舰版V3.1

    链接:https://pan.baidu.com/s/1R5ldFDjekuXmEp42-8SQSQ 提取码:gkm9

  8. Python组合类型笔记

    Python中常用的三种组合数据类型,分别是: - 集合类型 - 序列类型 - 字典类型 1. 集合类型: -集合用大括号{}表示,元素间用逗号分隔 -建立集合类型用{}或set() -建立空集合类型 ...

  9. sqlalchemy 连接mysql8.0报 RuntimeError: cryptograpy si requeired for sha256_password 错误

    cryptography is required for sha256_password or caching_sha2_password 需要cryptography模块的支持才能连接需要sha25 ...

  10. JAVA项目开发之文档篇

    转自链接:https://blog.csdn.net/Zonzereal/article/details/76704455