SciPy线性代数包是使用优化的ATLAS LAPACK和BLAS库构建的,具有高效的线性代数运算能力。

线性代数包里的函数,操作对象都是二维数组。

SciPy.linalg 与 NumPy.linalg

与NumPy.linalg相比,scipy.linalg除了包含numpy.linalg中的所有函数,还具有numpy.linalg中没有的高级功能。

线性方程组求解

scipy.linalg.solve 函数可用于解线性方程。例如,对于线性方程$a * x + b * y = z$,求出未知数x, y值。

示例

解下面的联立方程组:

$$

x + 3y + 5z = 10 \

2x + 5y + z = 8 \

2x + 3y + 8z = 3

$$

上面的方程组,可以用矩阵表示为:

$$

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right] =

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

$$

利用矩阵求解上面方程组,如下图所示:

$$

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right]

=

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]^{-1}

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

= \frac{1}{25}

\left[

\begin{matrix}

-232 \

129 \

19

\end{matrix}

\right]

=

\left[

\begin{matrix}

-9.28 \

5.16 \

0.76

\end{matrix}

\right]

$$

下面我们使用scipy来求解。

scipy.linalg.solve函数接受两个输入,数组a和数组b,数组a表示系数,数组b表示等号右侧值,求出的解将会放在一个数组里返回。

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
b = np.array([10, 8, 3]) # 求解
x = linalg.solve(a, b) # 输出解值
print (x)

输出

[-9.28  5.16  0.76]

计算行列式

矩阵A的行列式表示为$|A|$,行列式计算是线性代数中的常见运算。

SciPy中,可以使用det()函数计算行列式,它接受一个矩阵作为输入,返回一个标量值,即该矩阵的行列式值。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 计算行列式
x = linalg.det(A) # 输出结果
print (x)

输出

-4.0

求取特征值与特征向量

求取矩阵的特征值、特征向量,也是线性代数中的常见计算。

通常,可以根据下面的关系,求取矩阵(A)的特征值(λ)、特征向量(v):

$$ Av = λv $$

scipy.linalg.eig 函数可用于计算特征值与特征向量,函数返回特征值和特征向量。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 求解
l, v = linalg.eig(A) # 打印特征值
print('特征值')
print (l) # 打印特征向量
print('特征向量')
print (v)

上面的程序将生成以下输出。

特征值
[-0.35234996+0.j 11.35234996+0.j]
特征向量
[[-0.76642628 -0.43192981]
[ 0.64233228 -0.90190722]]

SVD奇异值分解

奇异值分解(SVD)是现在比较常见的算法之一,也是数据挖掘工程师、算法工程师必备的技能之一。 假设A是一个$M×N$的矩阵,那么通过矩阵分解将会得到$U,Σ,VT$(V的转置)三个矩阵,其中U是一个$M×M$的方阵,被称为左奇异向量,方阵里面的向量是正交的;Σ是一个$M×N$的对角矩阵,除了对角线的元素其他都是0,对角线上的值称为奇异值;$VT$(V的转置)是一个$N×N$的矩阵,被称为右奇异向量,方阵里面的向量也都是正交的。

$$ A_{m\times{n}} = U_{m\times{m}} Σ_{m\times{n}} V_{n\times{n}}^T$$

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2) # 输出原矩阵
print('原矩阵')
print(a) # 求解
U, s, Vh = linalg.svd(a) # 输出结果
print('奇异值分解')
print(U, "#U")
print(Vh, "#Vh")
print(s, "#s")

上面的程序将生成以下输出。

原矩阵
[[ 1.81840014+0.16615057j -0.47446573-2.36327076j]
[-0.19366846-0.44489565j -0.03227288+0.02260894j]
[-0.91921239-0.99340761j -1.33606096+0.40858722j]]
奇异值分解
[[-0.84399035+0.03548862j -0.1574924 +0.44602345j 0.08723906-0.23466874j]
[ 0.03893388+0.08672055j -0.19156838-0.45118633j -0.02718865-0.86600053j]
[ 0.23121352+0.47320699j -0.71944217+0.13562682j 0.41089761+0.13336765j]] #U
[[-0.63461867+0.j 0.05670247+0.77074248j]
[ 0.77282543+0.j 0.04656219+0.63290822j]] #Vh
[3.55734783 0.7144458 ] #s

SciPy 线性代数的更多相关文章

  1. scipy科学计算库

    特定函数 例贝塞尔函数: 积分 quad,dblquad,tplquad对应单重积分,双重积分,三重积分 from scipy.integrate import quad,dblquad,tplqua ...

  2. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  3. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 常量

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 如何使用charles对Android Https进行抓包

      Charles.png charles是一款在Mac下常用的截取网络封包工具,对Android Http进行抓包,只要对手机设置代理即可,但对Android Https进行抓包还是破费一些功夫,网 ...

  2. iOS 10.3 以上系统实现应用内评分及开发者回复评论

    在 iOS 10.3 之前,如果你要给一个应用评分,那么你需要打开 App Store,搜索应用,找到评论,点击撰写评论,然后评分.整个评分流程非常繁琐,还要忍受漫长的页面加载,导致很少有用户愿意主动 ...

  3. 「CF197B Limit」

    题目撞名 题目大意: 给出两个函数 \(P(x),Q(x)\). \(P(x)=a_0 \times x^N+a_1 \times x^{N-1}+a_2 \times x^{N-2} \cdots ...

  4. day04-MyBatis的缓存与懒加载

    为什么会用到缓存? 为了减少与数据库链接所消耗的时间,将查询到的内容放到内存中去,下次查询直接取用就ok了. 缓存的适应场景: 1.经常查询并且不经常改变的. 2.数据的正确与否对最终结果影响不大的. ...

  5. centos启动jar包

    不挂断运行命令,日志输出到log.txt中 nohup java -jar boot-cms-module-system-2.0.1.jar >log.txt & Linux 运行jar ...

  6. mysql 表这段内容替换

    update `cr_article` set `img`=replace(`img`,'http://192.168.2.10/upload','http://zouke1220.oss-cn-be ...

  7. LeetCode 345. Reverse Vowels of a String(双指针)

    题意:给定一个字符串,反转字符串中的元音字母. 例如: Input: "leetcode" Output: "leotcede" 法一:双指针 class So ...

  8. 02-04Android学习进度报告四

    今天主要学习Android界面的构建,包括Textview.EdixtText.Button等元素的应用. 关于Textview,主要是以下属性: id:为TextView设置一个组件id,根据id, ...

  9. Controller层注解

    /** * Copyright © 2012-2014 <a href="https://github.com/thinkgem/jeesite">JeeSite< ...

  10. RabbitMQ通过http API获取队列消息数量等信息

    参考 RabbitMQ提供了HTTP API手册,发现其中有获取队列情况的API.(本地的API手册地址为:http://localhost:15672/api) 所有API调用都需要做权限验证,需在 ...