SciPy线性代数包是使用优化的ATLAS LAPACK和BLAS库构建的,具有高效的线性代数运算能力。

线性代数包里的函数,操作对象都是二维数组。

SciPy.linalg 与 NumPy.linalg

与NumPy.linalg相比,scipy.linalg除了包含numpy.linalg中的所有函数,还具有numpy.linalg中没有的高级功能。

线性方程组求解

scipy.linalg.solve 函数可用于解线性方程。例如,对于线性方程$a * x + b * y = z$,求出未知数x, y值。

示例

解下面的联立方程组:

$$

x + 3y + 5z = 10 \

2x + 5y + z = 8 \

2x + 3y + 8z = 3

$$

上面的方程组,可以用矩阵表示为:

$$

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right] =

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

$$

利用矩阵求解上面方程组,如下图所示:

$$

\left[

\begin{matrix}

x \

y \

z

\end{matrix}

\right]

=

\left[

\begin{matrix}

1 & 3 & 5 \

2 & 5 & 1 \

2 & 3 & 8

\end{matrix}

\right]^{-1}

\left[

\begin{matrix}

10 \

8 \

3

\end{matrix}

\right]

= \frac{1}{25}

\left[

\begin{matrix}

-232 \

129 \

19

\end{matrix}

\right]

=

\left[

\begin{matrix}

-9.28 \

5.16 \

0.76

\end{matrix}

\right]

$$

下面我们使用scipy来求解。

scipy.linalg.solve函数接受两个输入,数组a和数组b,数组a表示系数,数组b表示等号右侧值,求出的解将会放在一个数组里返回。

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
b = np.array([10, 8, 3]) # 求解
x = linalg.solve(a, b) # 输出解值
print (x)

输出

[-9.28  5.16  0.76]

计算行列式

矩阵A的行列式表示为$|A|$,行列式计算是线性代数中的常见运算。

SciPy中,可以使用det()函数计算行列式,它接受一个矩阵作为输入,返回一个标量值,即该矩阵的行列式值。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 计算行列式
x = linalg.det(A) # 输出结果
print (x)

输出

-4.0

求取特征值与特征向量

求取矩阵的特征值、特征向量,也是线性代数中的常见计算。

通常,可以根据下面的关系,求取矩阵(A)的特征值(λ)、特征向量(v):

$$ Av = λv $$

scipy.linalg.eig 函数可用于计算特征值与特征向量,函数返回特征值和特征向量。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
A = np.array([[3,4],[7,8]]) # 求解
l, v = linalg.eig(A) # 打印特征值
print('特征值')
print (l) # 打印特征向量
print('特征向量')
print (v)

上面的程序将生成以下输出。

特征值
[-0.35234996+0.j 11.35234996+0.j]
特征向量
[[-0.76642628 -0.43192981]
[ 0.64233228 -0.90190722]]

SVD奇异值分解

奇异值分解(SVD)是现在比较常见的算法之一,也是数据挖掘工程师、算法工程师必备的技能之一。 假设A是一个$M×N$的矩阵,那么通过矩阵分解将会得到$U,Σ,VT$(V的转置)三个矩阵,其中U是一个$M×M$的方阵,被称为左奇异向量,方阵里面的向量是正交的;Σ是一个$M×N$的对角矩阵,除了对角线的元素其他都是0,对角线上的值称为奇异值;$VT$(V的转置)是一个$N×N$的矩阵,被称为右奇异向量,方阵里面的向量也都是正交的。

$$ A_{m\times{n}} = U_{m\times{m}} Σ_{m\times{n}} V_{n\times{n}}^T$$

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np # 声明numpy数组
a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2) # 输出原矩阵
print('原矩阵')
print(a) # 求解
U, s, Vh = linalg.svd(a) # 输出结果
print('奇异值分解')
print(U, "#U")
print(Vh, "#Vh")
print(s, "#s")

上面的程序将生成以下输出。

原矩阵
[[ 1.81840014+0.16615057j -0.47446573-2.36327076j]
[-0.19366846-0.44489565j -0.03227288+0.02260894j]
[-0.91921239-0.99340761j -1.33606096+0.40858722j]]
奇异值分解
[[-0.84399035+0.03548862j -0.1574924 +0.44602345j 0.08723906-0.23466874j]
[ 0.03893388+0.08672055j -0.19156838-0.45118633j -0.02718865-0.86600053j]
[ 0.23121352+0.47320699j -0.71944217+0.13562682j 0.41089761+0.13336765j]] #U
[[-0.63461867+0.j 0.05670247+0.77074248j]
[ 0.77282543+0.j 0.04656219+0.63290822j]] #Vh
[3.55734783 0.7144458 ] #s

SciPy 线性代数的更多相关文章

  1. scipy科学计算库

    特定函数 例贝塞尔函数: 积分 quad,dblquad,tplquad对应单重积分,双重积分,三重积分 from scipy.integrate import quad,dblquad,tplqua ...

  2. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  3. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 常量

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. vue 组件,以及组件的复用

    有时候代码的某一模块可能会经常使用到,那么完全可以把这一模块抽取出来,封装为一个组件,哪里需要用到的时候只需把模块调用即可 .参考vue官方 https://cn.vuejs.org/v2/guide ...

  2. base64,base32bit加密解密

    import base64 str='admin' str=str.encode('utf-8') #加密 bs64=base64.b64encode(str) #解密 debs64=base64.b ...

  3. 安装 Python 虚拟环境 (Linux)

    我的 Ubuntu 18.04 预安装了 python 3.6,但是没有安装 pip,所以先进行安装: apt-get install python-pip 1. 安装虚拟环境所需包: pip ins ...

  4. 使用pyinstaller打包.py程序

    使用pyinstaller打包.py程序 例如打包D:/Desktop 目录下的 filename.py 文件 打开 cmd 将目录切换至 D:/Desktop 输入命令 pyinstaller -F ...

  5. 五 Action访问方法,method配置,通配符(常用),动态

    1 通过method配置(有点low) 建立前端JSP:demo4.jsp <%@ page language="java" contentType="text/h ...

  6. 支持USB4的Linux 5.6,有望在今年4月份推出

    导读 根据外媒Phoronix的报道,Linux 5.6将支持USB4,. USB4的规范在去年9月份发布,基于雷电3,并与之向后兼容.英特尔的开源部门在去年10月份添加了USB4的初始补丁. 据报道 ...

  7. 帆软FineReport报表使用小技巧

    1.IF函数写法: =IF(E3=0 && F3=0 && G3=0,1,0)

  8. 【PAT甲级】1031 Hello World for U (20 分)

    题意: 输入一个字符串长度为5~80,以'U'型输出,使得底端一行字符数量不小于侧面一列,左右两列长度相等. trick: 不把输出的数组全部赋值为空格为全部答案错误,可能不赋值数组里值为0,赋值后是 ...

  9. JS中字符串的编码 解码

    DEPTNAME 是一个字符串 编码: DEPTNAME = encodeURI(encodeURI(DEPTNAME)); 解码: DEPTNAME = decodeURI(DEPTNAME,&qu ...

  10. 阿里云服务器ubantu创建新用户登录显示问题

    在root用户下输入:vi /etc/passwd,找到添加的用户,在后面加上/bin/bash 重新登录即回复正常