数学--数论--HDU 2104 丢手绢(离散数学 mod N+ 剩余类 生成元)+(最大公约数)
The Children’s Day has passed for some days .Has you remembered something happened at your childhood? I remembered I often played a game called hide handkerchief with my friends.
Now I introduce the game to you. Suppose there are N people played the game ,who sit on the ground forming a circle ,everyone owns a box behind them .Also there is a beautiful handkerchief hid in a box which is one of the boxes .
Then Haha(a friend of mine) is called to find the handkerchief. But he has a strange habit. Each time he will search the next box which is separated by M-1 boxes from the current box. For example, there are three boxes named A,B,C, and now Haha is at place of A. now he decide the M if equal to 2, so he will search A first, then he will search the C box, for C is separated by 2-1 = 1 box B from the current box A . Then he will search the box B ,then he will search the box A.
So after three times he establishes that he can find the beautiful handkerchief. Now I will give you N and M, can you tell me that Haha is able to find the handkerchief or not. If he can, you should tell me “YES”, else tell me “POOR Haha”.
Input
There will be several test cases; each case input contains two integers N and M, which satisfy the relationship: 1<=M<=100000000 and 3<=N<=100000000. When N=-1 and M=-1 means the end of input case, and you should not process the data.
Output
For each input case, you should only the result that Haha can find the handkerchief or not.
Sample Input
3 2
-1 -1
Sample Output
YES
每次加MmodN,如果每次加N能遍历整个集合的话,那他一定是mod N+剩余类的生成元。生成元的条件是M与N互质。
import java.util.Scanner;
public class Main {
static int gcd(int a, int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
int a = in.nextInt();
int b = in.nextInt();
if (a == -1 && b == -1) {
break;
}
if (gcd(a, b) == 1)
System.out.println("YES");
else System.out.println("POOR Haha");
}
in.close();
}
}
数学--数论--HDU 2104 丢手绢(离散数学 mod N+ 剩余类 生成元)+(最大公约数)的更多相关文章
- 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂
Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...
- 数学--数论--HDU 2802 F(N) 公式推导或矩阵快速幂
Giving the N, can you tell me the answer of F(N)? Input Each test case contains a single integer N(1 ...
- 数学--数论--HDU 6128 Inverse of sum (公式推导论)
Description 给nn个小于pp的非负整数a1,-,na1,-,n,问有多少对(i,j)(1≤i<j≤n)(i,j)(1≤i<j≤n)模pp在意义下满足1ai+aj≡1ai+1aj ...
- 数学--数论--HDU - 6124 Euler theorem (打表找规律)
HazelFan is given two positive integers a,b, and he wants to calculate amodb. But now he forgets the ...
- 数学--数论--HDU 6063 RXD and math (跟莫比乌斯没有半毛钱关系的打表)
RXD is a good mathematician. One day he wants to calculate: output the answer module 109+7. p1,p2,p3 ...
- 数学--数论--Hdu 5793 A Boring Question (打表+逆元)
There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 数学--数论--HDU 5382 GCD?LCM?(详细推导,不懂打我)
Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the ...
- 数学--数论--HDU 2674 沙雕题
WhereIsHeroFrom: Zty, what are you doing ? Zty: I want to calculate N!.. WhereIsHeroFrom: So easy! H ...
随机推荐
- MTK Android 设置下添加一级菜单[ZedielPcbTest]
功能描述:Android7.1.2 设置下添加一级菜单[ZedielPcbTest],点击ZedielPcbTest,启动ZedielPcbTest.apk应用. 编译:需要在out目录删除Settt ...
- Linux基础篇,磁盘及文件使用管理
在windows系统下,我们可以使用图形化界面很明了的看出当前硬盘使用量与某个文件的占用空间大小和文件数量.但是在linux系统中,我们应该如何得到这些信息呢? 当然是功能强大的df与du了. 一.d ...
- spring-cloud feign的多参数传递方案
查看原文 一.GET请求多参数URL 1.方法一(推荐) @FeignClient(“microservice-provider-user”) public interface UserFeignCl ...
- 教你爬取腾讯课堂、网易云课堂、mooc等所有课程信息
本文的所有代码都在GitHub上托管,想要代码的同学请点击这里
- JNDI数据源的配置及使用 (2010-11-21 21:16:43)转载▼
JNDI数据源的配置及使用 (2010-11-21 21:16:43)转载▼ 标签: 杂谈 分类: 数据库 数据源的作用 JDBC操作的步骤: 1. 加载驱动程序 2. 连接数据库 3. 操作数据库 ...
- week homework: 大家来找茬
上周课程主题为用户体验,每位同学也根据自己使用APP的体验,例举出一些手机或电脑客户端软件的bug或用户体验非常不好的地方: Tianfu: GitHub.com:界面不够直观,有许多功能不知道入口在 ...
- Cyclic Nacklace 杭电3746
CC always becomes very depressed at the end of this month, he has checked his credit card yesterday, ...
- java对象头信息和三种锁的性能对比
java头的信息分析 首先为什么我要去研究java的对象头呢? 这里截取一张hotspot的源码当中的注释 这张图换成可读的表格如下 |-------------------------------- ...
- (一)C# Windows Mobile 半透明窗体
Windows Mobile,个人心中臻至完美的系统. 不忍自己对WM的钻研成果消逝,故留作纪念. 系列开篇,便是一个曾令自己困扰很久的问题:如何实现半透明窗体. 如果了解Win32编程,其实很简单. ...
- 页面性能分析-Chrome Dev Tools
一.分析面板介绍 进行页面性能快速分析的主要是图中圈出来的几个模块功能: Network : 页面中各种资源请求的情况,这里能看到资源的名称.状态.使用的协议(http1/http2/quic...) ...