一.更新版进程池与进程池比较

from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import os, time def func(i):
print('Process', i, os.getpid())
time.sleep(0.1)
print("Process..end")
return 88899

# (1)ProcessPoolExcutor 进程池的基本使用(改良版)

相对于旧版的进程池,

一定会等待子进程全部执行完毕之后,再终止程序,相当于过去的Process流程

shutdown 相当于Process里面的join

if __name__ == "__main__":
# (1)ProcessPoolExecutor() <==> Pool()
p = ProcessPoolExecutor(5)
# (2)submit() <==> apply_async()
res = p.submit(func, 55)
# (3)result() <==> get()
res = res.result()
print(res) #
# (4)shutdown <==> close + join
#p.shutdown()
print("主进程执行结束...")

# (2)线程池

from threading import current_thread as ct
def func(i):
print("thread",i,ct().ident)
time.sleep(0.1)
print("thread %s end" % (i)) #可以在参数中指定并发的线程数
tp = ThreadPoolExecutor(10)
for i in range(20):
tp.submit(func,i)
#tp.shutdown()
print("主线程执行结束...")

# (3)线程池的返回值

from threading import current_thread as cthread

def func(i):
print("thread", i, cthread().ident)
# 加延迟防止个别线程因为执行速度过快,又接收任务,阻碍新线程的创建
# time.sleep(0.1)
print("threading %s end" % (i))
# return "*" * i
return cthread().ident tp = ThreadPoolExecutor()
lst = []
setvar = set()
for i in range(10):
res = tp.submit(func,i)
lst.append(res) for i in lst:
# print(i.result())
setvar.add(i.result())
print(setvar,len(setvar))
print("主线程执行结束...")

# (4)map 返回迭代器

from threading import current_thread as cthread
def func(i):
print("threading",i,cthread().ident)
time.sleep(0.1)
print("thread %s end" % (i))
return "*" * i tp = ThreadPoolExecutor(5)
it = tp.map(func,range(20)) # map
from collections import Iterable,Iterator
print(isinstance(it,Iterator))
for i in it:
print(i) tp.shutdown()
print("主线程执行结束..")

二.回调函数

回调函数:

    把函数当成参数传递的另外一个函数

    函数先执行,最后在执行当参数传递的这个函数,整个过程是回调,这个参数是回调函数

# (1) 线程池的回调函数是由 子线程完成

from concurrent.futures import  ThreadPoolExecutor
from threading import current_thread as cthread import time
def func(i):
print("thread",i,cthread().ident)
time.sleep(0.1)
print("thread %s end" % (i))
return "*" * i # 定义成回调函数
def call_back(args):
print("call back:",cthread().ident)
print(args.result()) tp = ThreadPoolExecutor(5)
for i in range(1,11):
# submit(函数,参数).add_done_callback(要添加的回调函数)
tp.submit(func,i).add_done_callback(call_back) tp.shutdown()
print("主线程:",cthread().ident)

# (2) 进程池的回调函数是由 主进程完成

from concurrent.futures import ProcessPoolExecutor
import os,time
def func(i):
print("Process",i,os.getpid())
time.sleep(0.1)
print("Process %s end" % (i)) if __name__ == "__main__":
p = ProcessPoolExecutor(5)
p.submit(func,11)
p.shutdown()
print("主进程:",os.getpid())

例2:

from concurrent.futures import ProcessPoolExecutor
import os,time
def func(i):
print("Process",i,os.getpid())
time.sleep(0.1)
print("Process %s end" % (i))
return i * "*" # 回调函数
def call_back(args):
print("call back:",os.getpid())
# print(args)
print(args.result()) if __name__ == "__main__":
# 同一时间最多允许5个进程并发
tp = ProcessPoolExecutor(5)
for i in range(1,11):
tp.submit(func,i).add_done_callback(call_back)
tp.shutdown()
print("主进程id:",os.getpid())

python 之并发编程更新版进程池与进程池比较与回调函数的更多相关文章

  1. Python并发编程06 /阻塞、异步调用/同步调用、异步回调函数、线程queue、事件event、协程

    Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件event.协程 目录 Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件 ...

  2. python 之 并发编程(守护线程与守护进程的区别、线程互斥锁、死锁现象与递归锁、信号量、GIL全局解释器锁)

    9.94 守护线程与守护进程的区别 1.对主进程来说,运行完毕指的是主进程代码运行完毕2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕​详细解释:1.主 ...

  3. Python 3 并发编程多进程之守护进程

    Python 3 并发编程多进程之守护进程 主进程创建守护进程 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemo ...

  4. Python 3 并发编程多进程之进程同步(锁)

    Python 3 并发编程多进程之进程同步(锁) 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,竞争带来的结果就是错乱,如何控制,就是加锁处理. 1. ...

  5. Python 3 并发编程多进程之队列(推荐使用)

    Python 3 并发编程多进程之队列(推荐使用) 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 可以往 ...

  6. 并发编程学习笔记(14)----ThreadPoolExecutor(线程池)的使用及原理

    1. 概述 1.1 什么是线程池 与jdbc连接池类似,在创建线程池或销毁线程时,会消耗大量的系统资源,因此在java中提出了线程池的概念,预先创建好固定数量的线程,当有任务需要线程去执行时,不用再去 ...

  7. Python 3 并发编程多进程之进程池与回调函数

    Python 3 进程池与回调函数 一.进程池 在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.多进程是实现并发的手段之一,需要注意 ...

  8. python并发编程之多进程2-(数据共享及进程池和回调函数)

    一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实 ...

  9. python并发编程之多进程2数据共享及进程池和回调函数

    一.数据共享 尽量避免共享数据的方式 可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. 命令就是一 ...

随机推荐

  1. 高内存 高CPU 劣质网络下的测试

    内存 先把系统的虚拟内存去掉 (右键我的电脑属性里有的.选择那个无分页文件 虚拟内存在任务管理器就不显示了), 然后机子本身内存不高,开几个网页就满了       CPU cpu可以用鲁大师测试cpu ...

  2. ES6 Set和Map的那点事

    Set  1.Set特点 类数组 新增数据结构 是构造函数 成员值唯一  注重独一无二的特征 2.Set实例的常用方法 console.log('------------Set操作方法-------- ...

  3. jmeter巧用自增长型变量

    实现目的 在进行性能测试时,某些请求中的参数值并不允许被重复使用,比如账号的创建.开通授权等服务,这时就需要在jmeter中构造一些自增长型的变量,供后续请求使用,以解决参数值重复的问题. 脚本实现 ...

  4. pyqt中定时器的使用

    1.定义一个定时器函数 # 定时器 from PyQt5.QtCore import QTimer def timer_start(): timer = QTimer() # fun1是监听的函数,如 ...

  5. XMOS发布集单片机,AI,FPGA,DSP于一身的跨界处理器完全体xcore.ai,致力于AIOT,售价1美元起步

    说明:XMOS这次致力于打造全新的,颠覆性的嵌入式平台,简化开发人员要学一堆东西才能开发一款高性能AIOT产品的痛点. XCORE.AI集单片机,AI,FPGA,DSP于一身,嵌入式软件开发人员可以灵 ...

  6. Python整合pdf【新手必学】

    在下载课件时往往会分成很多个小的pdf,一个也就几页,想要整合成一整个大pdf,于是百度了一下,网上有很多在线的pdf整合器,但是由于这蛋疼的网速,流量还要花钱,还是想要本地搞. 说python是万能 ...

  7. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  8. 1、TensorFlow如何工作?

    TensorFlow特殊的张量计算引擎使得TensorFlow能够很好的满足机器学习的计算需要,从2015年开始发起 本书基于TensorFlow0.12+和python3.0+ 环境安装要求 pip ...

  9. Android SDK Tools,Platform-tools,Build-tools分别有什么作用?

    SDK Tools:是下载sdk最基础的,由它再来下载Platform-tools,Build-tools platform-tools包含开发app的平台依赖的开发和调试工具,包括 adb.fast ...

  10. 树莓派3B 安装gcc和g++

    转:https://blog.csdn.net/zhuming3834/article/details/81946707 安装 如果不是root 用户,请自行加上sudo apt-get instal ...