【线段树基础】NKOJ 1321 数列操作
|
问题描述
假设有一列数{Ai}(1≤i≤n),支持如下两种操作:
将Ak的值加D。(k, D是输入的数)
输出As+As+1+…+At。(s, t都是输入的数,S≤T)
输入格式
第一行一个整数n,
第二行为n个整数,表示{Ai}的初始值≤10000。
第三行为一个整数m,表示操作数
下接m行,每行描述一个操作,有如下两种情况:
ADD k d (表示将Ak加d,1<=k<=n,d为数,d的绝对值不超过10000)
SUM s t (表示输出As+…+At)
输出格式
对于每一个SUM提问,输出结果
样例输入 1
5
1 2 3 2 4
5
SUM 1 2
SUM 1 5
ADD 1 2
SUM 1 2
SUM 1 5
样例输出 1
3
12
5
14
样例输入 2
10
44 37 20 29 13 8 32 14 46 29
8
ADD 5 3
SUM 1 8
SUM 4 6
ADD 3 18
SUM 2 5
ADD 4 15
SUM 1 7
SUM 5 10
样例输出 2
200
53
120
219
145
提示
M,N<=100000
#include<cstdio>
#define maxn 100003
int n, m;
int A[maxn];
char op[];
struct node {
int a, b, v;
}Tree[maxn << ];
namespace Ironclad_Programming {
#define R register int
#define For(i, s, n) for (R i = s; i <= n; ++ i)
namespace ini {
void MakeTree(int p, int x, int y) {
Tree[p].a = x;
Tree[p].b = y;
if (x < y) {
MakeTree(p * , x, ((x + y) >> ));
MakeTree(p * + , ((x + y) >> ) + , y);
Tree[p].v = Tree[p * ].v + Tree[p * + ].v;
} else Tree[p].v = A[x];
}
void executive() {
scanf("%d", &n);
For (i, , n)scanf("%d", &A[i]);
MakeTree(, , n);
}
}
namespace solve {
void Add(int p, int k, int d) {
Tree[p].v += d;
if (Tree[p].a == Tree[p].b)return;
if (Tree[p * ].a <= k && Tree[p * ].b >= k)Add(p * , k, d);
if (Tree[p * + ].a <= k && Tree[p * + ].b >= k)Add(p * + , k, d);
}
int GetSum(int p, int s, int t) {
if (t < Tree[p].a || s > Tree[p].b)return ;
if (s <= Tree[p].a && Tree[p].b <= t)return Tree[p].v;
else {
int Total = ;
Total += GetSum(p * , s, t);
Total += GetSum(p * + , s, t);
return Total;
}
}
void executive() {
scanf("%d", &m);
For (i, , m) {
scanf("%s", op);
if (op[] == 'A') {
int k, d;
scanf("%d%d", &k, &d);
Add(, k, d);
} else {
int s, t;
scanf("%d%d", &s, &t);
printf("%d\n", GetSum(, s, t));
}
}
}
}
void Main() {
ini::executive();
solve::executive();
}
#undef R
#undef For
}
int main() {
Ironclad_Programming::Main();
return ;
}
【线段树基础】NKOJ 1321 数列操作的更多相关文章
- P1198 [JSOI2008]最大数(线段树基础)
P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: ...
- Poj 3246 Balanced Lineup(线段树基础)
依旧是线段树基础题 询问区间的最大值和最小值之差,只有询问,没有插入删除.继续理解基础线段树 #include <iostream> #include <algorithm> ...
- [JSOI2008]最大数(线段树基础)
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: L 不超过当前数列的长度.(L > ...
- 线段树基础模板&&扫描线
线段树的单点更新+区间求和 hdu1166敌兵布阵 Input 第一行一个整数T,表示有T组数据. 每组数据第一行一个正整数N(N<=),表示敌人有N个工兵营地 ,接下来有N个正整数,第i个正整 ...
- POJ 2777 线段树基础题
题意: 给你一个长度为N的线段数,一开始每个树的颜色都是1,然后有2个操作. 第一个操作,将区间[a , b ]的颜色换成c. 第二个操作,输出区间[a , b ]不同颜色的总数. 直接线段树搞之.不 ...
- HDU 1754 I Hate It(线段树基础应用)
基础线段树 #include<iostream> #include<cstdio> #include<cstring> using namespace std; # ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- hdu 1754 I Hate It 线段树基础题
Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求, ...
- hdu 1698 Just a Hook(线段树基础)
成段更新的线段树,加入了延时标记............ 线段树这种东西细节上的理解因人而异,还是要自己深入理解......慢慢来 #include <iostream> #include ...
随机推荐
- Echarts 自定义legend图片,修改点击之后的颜色图解
第一个问题:echarts 可以自定义图例的图标,百度上很多回答都是引用的相对路径,但是不知道为啥,我的vue项目就是引用不显示,在network里面找不到相应图片 后来我想了个法子,就是先获取到这个 ...
- MyBatis 源码分析-项目总览
MyBatis 源码分析-项目总览 1.概述 本文主要大致介绍一下MyBatis的项目结构.引用参考资料<MyBatis技术内幕> 此外,https://mybatis.org/mybat ...
- NLP自然语言处理入门-- 文本预处理Pre-processing
引言 自然语言处理NLP(nature language processing),顾名思义,就是使用计算机对语言文字进行处理的相关技术以及应用.在对文本做数据分析时,我们一大半的时间都会花在文本预处理 ...
- django 从零开始 11 根据时间戳加密数据
django自带一个加密的方法signer,对数据进行一个加密 一般这种方式用于账号密码邮箱找回,或者token设置 class TimestampSigner(Signer): def timest ...
- JAVAEE学习day02
1.数据类型的转换 1>自动转换(隐式) // 将取值范围小的数据类型自动提升为取值范围大的类型 // 定义byte类型数据 byte b = 10; // 定义short类型数据 short ...
- [项目分享]JSP+Servlet+JDBC实现的云端汽修后台管理系统
本文存在视频版本,请知悉 项目简介 项目来源于:https://gitee.com/chenlinSir/CloudDemo-servlet 难度等级:简单 基于JSP+Servlet+Jdbc的云端 ...
- 记Android R(SDK=30)系统执行UiAutomator1.0异常
最近Android发布了AndroidStudio 3.6稳定版,升级后明显能体验到好多细节的提升,最大的提升莫过于可以创建Android R预览版的模拟器了,并且模拟器可以设置多个尺寸的屏幕.And ...
- (转)协议森林15 先生,要点单吗? (HTTP协议概览)
协议森林15 先生,要点单吗? (HTTP协议概览) 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们在TCP流通信中说明了, ...
- foobox更新日志
2020-1-31, 6.1.5.1a 版(*) 跟进汉化版修正.(*) MusicTag升级到 1.0.4.0.(*) 部分图标改良,其他优化和修正.(+) 丰富网络功能,增加一个搜索源,一个榜单源 ...
- 初始Django—Hello world
1. 准备环境 > python -V Python > pip -V pip from c:\python3\lib\site-packages\pip (python 3.7) > ...