Description

我们定义斐波那契数列如下:
f1=1
f2=2
f(n)=f(n-1)+f(n-2)(n>=3)
 
现在,给定两个数a和b,计算有多少个斐波那契数列中的数在a和b之间(包含边界)。

Input

输入包含多组测试数据,每组测试数据都是两个非负整数a和b,当a和b都等于0时,程序结束。0<=a<=b<=10^100,注意a和b都不会出现前导0的情况(即首位为0)。

Output

输出在a和b之间(满足a<=f(i)<=b)数的数量。

Sample Input

10 100
1234567890 9876543210
0 0 

Sample Output

5
 
注:代码有点问题,系统过不了(hdu 1316)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string.h>
#include <malloc.h>
using namespace std; void add(char* a,char* b,char* c)
{
int i,j,k,max,min,n,temp;
char *s,*pmax,*pmin;
max=strlen(a);
min=strlen(b);
if (max<min)
{
temp=max;
max=min;
min=temp;
pmax=b;
pmin=a;
}
else
{
pmax=a;
pmin=b;
}
s=(char*)malloc(sizeof(char)*(max+1));
s[0]='0';
for (i=min-1,j=max-1,k=max; i>=0; i--,j--,k--)
s[k]=pmin[i]-'0'+pmax[j];
for (; j>=0; j--,k--)
s[k]=pmax[j];
for (i=max; i>=0; i--)
if (s[i]>'9')
{
s[i]-=10;
s[i-1]++;
}
if (s[0]=='0')
{
for (i=0; i<=max; i++)
c[i-1]=s[i];
c[i-1]='\0';
}
else
{
for (i=0; i<=max; i++)
c[i]=s[i];
c[i]='\0';
}
free(s);
} char a[360][360]; int main()
{
int i,x,y,flag1,flag2;
char t1[105],t2[105]; strcpy(a[1],"1");
strcpy(a[2],"2");
for(i=3;i<360;i++)
add(a[i-1],a[i-2],a[i]); while(cin>>t1>>t2)
{
if(strcmp(t1,"0")==0&&strcmp(t2,"0")==0) break; flag1=0;flag2=0;
int len1=strlen(t1);
int len2=strlen(t2);
for(i=1;i<360;i++)
{
if(flag1==0&&strlen(a[i])==len1)
{
if(strcmp(a[i],t1)>=0)
{
flag1=1;
x=i;
}
}
if(flag1==0&&strlen(a[i])>len1)
{
flag1=1;
x=i;
} if(flag2==0&&strlen(a[i])==len2)
{
if(strcmp(a[i],t2)>=0)
{
flag2=1;
y=i;
if(strcmp(a[i],t2)>0)
y--;
}
}
if(flag2==0&&strlen(a[i])>len2)
{
flag2=1;
y=i-1;
}
}
cout<<y-x+1<<endl;
}
return 0;
}

  

fibonacci数列从a到b的个数的更多相关文章

  1. 可变长度的Fibonacci数列

    原题目: Write a recursive program that extends the range of the Fibonacci sequence.  The Fibonacci sequ ...

  2. fibonacci 数列及其应用

    fibonacci 数列及其延展 fibonacci计算 fibonacci数列是指 0,1,1,2,3,5,8,13,21……这样自然数序列,即从第3项开始满足f(n)=f(n-1)+f(n-2): ...

  3. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  4. 【wikioi】1250 Fibonacci数列(矩阵乘法)

    http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...

  5. 青蛙跳台阶(Fibonacci数列)

    问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...

  6. 用PL0语言求Fibonacci数列前m个中偶数位的数

    程序说明:求Fibonacci数列前m个中偶数位的数: 这是编译原理作业,本打算写 求Fibonacci数列前m个数:写了半天,不会写,就放弃了: 程序代码如下: var n1,n2,m,i; pro ...

  7. Fibonacci数列小程序

    Fibonacci数列小程序 问题分析:Fibonacci数列特征是前两项数均为1,从第三项起,前两项的和为第三项的数的数值用公式归纳起来为:f1=f2=1.f1=f1+f2.f2=f1+f2. 程序 ...

  8. 一个fibonacci数列简单求和的问题

    前段时间老师在讲函数调用的时候,用Fibonacci数列来演示了一下,因为以前没怎么接触过Fibonacci,所以当时很懵. 当时让求的是Fibonacci数列中,第N位值为多少,当时老师写的是: 之 ...

  9. 打印Fibonacci数列方法汇总(前20项,每行5个)

    NO.1 迭代法 标签:通俗.易懂 思路:先打印第一项.再在循环里面执行fib=fib1+fib2,把fib2赋给fib1,把fib赋给fib2,每行5个可使用if函数(循环次数对5取余). #inc ...

随机推荐

  1. Android Studio 经常使用功能介绍

    为了简化 Android 的开发力度,Google 决定将重点建设 Android Studio 工具.Google 会在今年年底停止支持其它集成开发环境.比方 Eclipse. Android St ...

  2. 新一代服务器性能测试工具Gatling

    新一代服务器性能测试工具Gatlinghttp://automationqa.com/forum.php?mod=viewthread&tid=2898&fromuid=2

  3. Windows CMD命令大全(转)

    Windows CMD命令大全   命令简介 cmd是command的缩写.即命令行 . 虽然随着计算机产业的发展,Windows 操作系统的应用越来越广泛,DOS 面临着被淘汰的命运,但是因为它运行 ...

  4. Python测试基础教程

    Python简明教程1-为什么 Pythonhttp://www.automationqa.com/forum.php?mod=viewthread&tid=3674&fromuid= ...

  5. 自动化测试管理平台ATMS(V2.0.3_8.28)下载

    自动化测试管理平台ATMS(V2.0.3_8.28)下载http://automationqa.com/forum.php?mod=viewthread&tid=2845

  6. POJ 3903 Stock Exchange

    Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2954   Accepted: 1082 De ...

  7. oracle vm virtualbox 如何让虚拟机可以上网

    刚安装了虚拟机,系统linux2.6. 可是想安装一些软件,发现没法联网.郁闷~  还要手动设置网络,可是也不是小白就可以干的事情,还要弄清楚原理才行. http://reverland.bitbuc ...

  8. python 字符串连接

    字符串连接 方法1: 用字符串的join方法 a = ['a','b','c','d']content = ''content = ''.join(a)print content 方法2: 用字符串的 ...

  9. 【软件分析与挖掘】BOAT: An Experimental Platform for Researchers to Comparatively and Reproducibly Evaluate Bug Localization Techniques

    摘要: 目前有许多的bug定位技术,但是,由于他们基于不同的数据集,而且有些数据集还不是公开的,甚至有些技术只应用于小数据集,不具有通用性,因此,不好比较这些技术之间的优劣. 因此,BOAT应运而生. ...

  10. Weblogic 10.3.6生产模式启动

    生产模式启动里需要输入用户名和密码,很麻烦.在域的/security目录下创建文件boot.properties,内容为: username=weblogic password=weblogic123 ...