Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 59239   Accepted: 17157

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题目链接:POJ 2528

这题离散化不是很难容易想到我感觉麻烦的是对于query这个函数的查询方式,做了很久的一道题,很经典但是挺坑,数据虽说不是很严,一些不严谨的离散化也可以过,但数据本身应该是正确的。

用single 来表示区间是否单一颜色,最后加入颜色的时候别把颜色0加入即可

离散化我用的方法比较麻烦但感觉比较好理解,先给出现过的所有点排序,然后由于1~2+6~10离散之后会变成1~2 3~4 中间少了一段,因此对排序之后的数组遍历若出现pos[i]-pos[i-1]>1,则在数组末尾加上pos[i]-1(其他在pos[i]~pos[i-1]之间的数任意均可),然后再次对数组算上排序并去重unique。然后用lower_bound把坐标映射离散一下即可。

统计颜色个数,直接从大区间1~pos.size开始查询,直接暴力查询掉所有的叶子节点就行或者判断当前是否有颜色,有颜色就直接返回不用pushdown但是这种做法会超过建树的区间导致color出现0,特判一下0就行。

另外一种来自某kuangbin大牛(膜Orz...)的做法是倒序更新,倒着帖只要当前范围没被全部覆盖就说明张贴成功大,但是更新时要注意,每一次更新必须要pushup到顶端,不然下一次若更新到比较浅的层则会误认为当前区间可更新实际是没有传递信息上来(调试了大半个下午)。

如果用正序写过的推荐尝试一下写逆序更新,速度也比正序快一丢丢

暴力统计代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=10010;
struct seg
{
int l,mid,r;
bool single;
int color;
};
struct info
{
int l,r;
};
seg T[N<<4];
info pos[N];
vector<int>xpos;
set<int>Color; void init()
{
xpos.clear();
Color.clear();
}
void pushdown(int k)
{
if(T[k].single)
{
T[LC(k)].single=T[RC(k)].single=true;
T[LC(k)].color=T[RC(k)].color=T[k].color;
T[k].single=false;
}
}
void build(int k,int l,int r)
{
T[k].l=l;
T[k].r=r;
T[k].mid=MID(l,r);
T[k].color=0;
T[k].single=true;
if(l==r)
return ;
build(LC(k),l,T[k].mid);
build(RC(k),T[k].mid+1,r);
}
void update(int k,int l,int r,int color)
{
if(l<=T[k].l&&T[k].r<=r)
{
T[k].color=color;
T[k].single=true;
}
else
{
pushdown(k);
if(r<=T[k].mid)
update(LC(k),l,r,color);
else if(l>T[k].mid)
update(RC(k),l,r,color);
else
update(LC(k),l,T[k].mid,color),update(RC(k),T[k].mid+1,r,color);
}
}
void query(int k)
{
if(T[k].l==T[k].r||T[k].single)
{
if(T[k].color)
Color.insert(T[k].color);
return ;
}
else
{
pushdown(k);
query(LC(k));
query(RC(k));
}
}
int main(void)
{
int tcase,n,i;
scanf("%d",&tcase);
while (tcase--)
{
init();
scanf("%d",&n);
for (i=1; i<=n; ++i)
{
scanf("%d%d",&pos[i].l,&pos[i].r);
xpos.push_back(pos[i].l);
xpos.push_back(pos[i].r);
}
sort(xpos.begin(),xpos.end());
int sz=xpos.size();
for (i=1; i<sz; ++i)
if(xpos[i]-xpos[i-1]>1)
xpos.push_back(xpos[i-1]+1);
sort(xpos.begin(),xpos.end());
xpos.erase(unique(xpos.begin(),xpos.end()),xpos.end());
build(1,1,xpos.size());
for (i=1; i<=n; ++i)
{
pos[i].l=lower_bound(xpos.begin(),xpos.end(),pos[i].l)-xpos.begin()+1;
pos[i].r=lower_bound(xpos.begin(),xpos.end(),pos[i].r)-xpos.begin()+1;
update(1,pos[i].l,pos[i].r,i);
}
query(1);
printf("%d\n",Color.size());
}
return 0;
}

  

倒序更新代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=40010;
const int M=10010;
struct info
{
int l,r;
}node[M];
struct seg
{
int l,mid,r;
int color;
}T[N*8];
int kind;
vector<int>pos;
void pushup(int k)
{
if(T[LC(k)].color!=-1&&T[RC(k)].color!=-1)
T[k].color=T[LC(k)].color;
else
T[k].color=-1;
}
void build(int k,int l,int r)
{
T[k].l=l;
T[k].r=r;
T[k].mid=MID(l,r);
T[k].color=-1;
if(l==r)
return ;
build(LC(k),l,T[k].mid);
build(RC(k),T[k].mid+1,r);
}
bool post(int k,int l,int r,int c)
{
if(T[k].color!=-1)
return false;
if(T[k].l==l&&T[k].r==r)
{
T[k].color=c;
return true;
}
else
{
bool mix;//就是这里
if(r<=T[k].mid)
mix=post(LC(k),l,r,c);//直接return的话就不会pushup了
else if(l>T[k].mid)
mix=post(RC(k),l,r,c);
else
{
bool check_left=post(LC(k),l,T[k].mid,c);
bool check_right=post(RC(k),T[k].mid+1,r,c);
mix=check_left||check_right;
}
pushup(k);
return mix;
}
}
void init()
{
kind=0;
pos.clear();
}
int main(void)
{
int tcase,n,i;
scanf("%d",&tcase);
while (tcase--)
{
scanf("%d",&n);
init();
for (i=0; i<n; ++i)
{
scanf("%d%d",&node[i].l,&node[i].r);
pos.push_back(node[i].l);
pos.push_back(node[i].r);
}
sort(pos.begin(),pos.end());
int SZ=pos.size();
for (i=1; i<SZ; ++i)
if(pos[i-1]<pos[i]-1)
pos.push_back(pos[i]-1); sort(pos.begin(),pos.end()); pos.erase(unique(pos.begin(),pos.end()),pos.end());
for (i=0; i<n; ++i)
{
node[i].l=lower_bound(pos.begin(),pos.end(),node[i].l)-pos.begin()+1;
node[i].r=lower_bound(pos.begin(),pos.end(),node[i].r)-pos.begin()+1;
} build(1,1,pos.size());
for (i=n-1; i>=0; --i)//这里循环要改成逆序
kind+=post(1,node[i].l,node[i].r,i+1);
printf("%d\n",kind);
}
return 0;
}

POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)的更多相关文章

  1. POJ 2528 Mayor's posters (线段树+区间覆盖+离散化)

    题意: 一共有n张海报, 按次序贴在墙上, 后贴的海报可以覆盖先贴的海报, 问一共有多少种海报出现过. 题解: 因为长度最大可以达到1e7, 但是最多只有2e4的区间个数,并且最后只是统计能看见的不同 ...

  2. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  3. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  4. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  5. POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 ...

  6. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  7. POJ 2528 Mayor's posters (线段树,染色问题,离散化要注意)

    做这题建议看一下该题的discuss. #include <iostream> #include <stdio.h> #include <string.h> #in ...

  8. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  9. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

随机推荐

  1. c# 正则表达式 匹配回车

    1 "." 匹配除 "\n" 之外的任何单个字符,一般用".*?"匹配不包括回车的任意字符. 2 我们在用正则表达式分析html或者是xml ...

  2. 教官的游戏(codevs 2793)

    题目描述 Description 有N个学生刚吃完饭,准备出食堂. 国防学校有个规矩:必须2人一排或3人一列离开. 两个教官A,B轮流取2或3人,谁先取完谁就赢得游戏.(A先取) 若两人都用最优策略, ...

  3. Ajax案例(使用ajax进行加法运算)

    此案例功能实现了一边看视频一边进行加法运算,而加法运算时页面不会刷新请求 ajax代码: <script type="text/javascript" src="j ...

  4. innobackupex err2

    报错: [root@DB dbdata]# innobackupex --defaults-file=/etc/my.cnf --user=root --password=123 /data/dbda ...

  5. Git 分布式版本管理

    Git是分布式版本控制系统,我们常用的版本控制工具还有SVN.这里就得区分下什么是分布式版本控制系统,什么是集中化的版本控制系统. 集中化的版本控制系统 集中化的版本控制系统( Centralized ...

  6. C# 读取本地图片 转存到其他盘符

    UpFileContent upfile = new UpFileContent(); upfile.StationImageName = "123.png"; FileStrea ...

  7. poj 2186 有向图强连通分量

    奶牛互相之间有爱慕关系,找到被其它奶牛都喜欢的奶牛的数目 用tarjan缩点,然后判断有向图中出度为0的联通分量的个数,如果为1就输出联通分量中的点的数目,否则输出0. 算法源自kb模板 #inclu ...

  8. Android 编程下 App Install Location

    从 API 8 开始(参考官方文档:App Install Location | Android Developers),你可以将你的应用安装在外部储存中(例如,安装到设备的 SD 卡上).这是一个可 ...

  9. 简单几何(圆与多边形公共面积) UVALive 7072 Signal Interference (14广州D)

    题目传送门 题意:一个多边形,A点和B点,满足PB <= k * PA的P的范围与多边形的公共面积. 分析:这是个阿波罗尼斯圆.既然是圆,那么设圆的一般方程:(x + D/2) ^ 2 + (y ...

  10. SignalR —— Asp.net RealTime的春天

    一般的例子:http://www.asp.net/signalr/overview/signalr-20/getting-started-with-signalr-20/tutorial-gettin ...