题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入输出格式

输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。

输入输出样例

输入样例#1:

5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例#1:

21

二……二叉树……

二叉树大概只要DFS就可以了呀……写完树规才反应过来。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt;
int dis;
}e[mxn];
int hd[mxn],mct=;
void add_edge(int u,int v,int dis){
e[++mct].v=v;e[mct].nxt=hd[u];e[mct].dis=dis;hd[u]=mct;
return;
}
int n,q;
int f[mxn][mxn];
int num[mxn];
int w[mxn];
void DP(int u,int fa){
for(int i=;i<=num[u];i++){
f[u][i]=w[u];
}
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==fa)continue;
DP(v,u);
for(int j=num[u];j;j--){
for(int k=min(num[v],j-);k>=;k--){
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]);
}
}
}
return;
}
void Build(int u,int fa){
num[u]++;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==fa)continue;
w[v]=e[i].dis;
Build(v,u);
num[u]+=num[v];
}
return;
}
int main(){
int i,j;
n=read();q=read();
int u,v,d;
for(i=;i<n;i++){
u=read();v=read();d=read();
add_edge(u,v,d);
add_edge(v,u,d);
}
Build(,);
DP(,);
printf("%d\n",f[][q+]);
return ;
}

洛谷P2015 二叉苹果树的更多相关文章

  1. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  2. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  3. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  4. 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树

    这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...

  5. 洛谷 P2015 二叉苹果树

    老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...

  6. 洛谷—— P2015 二叉苹果树

    https://www.luogu.org/problem/show?pid=2015 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点 ...

  7. 洛谷P2015 二叉苹果树(树状dp)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  8. 洛谷P2015二叉苹果树

    传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...

  9. 洛谷 P2015 二叉苹果树 题解

    题面 裸的树上背包: 设f[u][i]表示在以u为子树的树种选择i条边的最大值,则:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][k]+u到v的边权); #include ...

随机推荐

  1. NGUI国际化 多语言

    相关组件 NGUI的本地化操作相关的组件 Localization UILocalize Language Selection 主要部分 在需要本地化的UILabel上绑定UILocalize,填写K ...

  2. 测试 Mono 安装

    测试 Mono 安装 为了测试核心编译器(mcs)和运行时(mono),应该创建一个简单的程序并编译它.可以在喜欢的任何文本编辑器中创建程序.这里采用一种快速而简陋的方法创建该文件(虽然没有任何格式化 ...

  3. 【转】【C#】SendMessage

    SendMessage是一个在user32.dll中声明的API函数,在C#中导入如下: using System.Runtime.InteropServices; [DllImport(" ...

  4. C语言 内存四大存储区域

    #include<stdio.h> #include<stdlib.h> //程序代码指令,define定义的常量---代码区(只读) //全局(关键)变量/常量,静态(关键) ...

  5. 各种同步方法性能比较(synchronized,ReentrantLock,Atomic)

    5.0的多线程任务包对于同步的性能方面有了很大的改进,在原有synchronized关键字的基础上,又增加了ReentrantLock,以及各种Atomic类.了解其性能的优劣程度,有助与我们在特定的 ...

  6. iBatis.Net实现返回DataTable和DataSet对象

    如题.要返回一个ADO.NET对象好像没有使用ORM的必要,而且从编程的角度看这样的实现一点也不OO,但是实际的开发场景中还是会碰到这种需求的.下面我就借鉴前人的经验,结合实际的示例,再总结一下.如果 ...

  7. Java系列:Add Microsoft SQL JDBC driver to Maven

    Maven does not directly support some libraries, like Microsoft's SQL Server JDBC. This tutorial will ...

  8. Linux(10.18-10.25)学习笔记

    一.学习目标 1. 了解常见的存储技术(RAM.ROM.磁盘.固态硬盘等) 2. 理解局部性原理 3. 理解缓存思想 4. 理解局部性原理和缓存思想在存储层次结构中的应用 5. 高速缓存的原理和应用 ...

  9. 浪潮之巅IT那点事之三——神奇的规律

    “道可道,非常道”是老子在<道德经>中的开篇第一句话,这句话的意思是:万事万物其真理是可以探索并道说得出来的,但这些真理并非是永恒的,天道轮转,没有永恒不变的真理(来自百度百科).在IT行 ...

  10. iOS中plist的创建,数据写入与读取

    iOS中plist的创建,数据写入与读取 Documents:应用将数据存储在Documents中,但基于NSuserDefaults的首选项设置除外Library:基于NSUserDefaults的 ...