题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入输出格式

输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。

输入输出样例

输入样例#1:

5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例#1:

21

二……二叉树……

二叉树大概只要DFS就可以了呀……写完树规才反应过来。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt;
int dis;
}e[mxn];
int hd[mxn],mct=;
void add_edge(int u,int v,int dis){
e[++mct].v=v;e[mct].nxt=hd[u];e[mct].dis=dis;hd[u]=mct;
return;
}
int n,q;
int f[mxn][mxn];
int num[mxn];
int w[mxn];
void DP(int u,int fa){
for(int i=;i<=num[u];i++){
f[u][i]=w[u];
}
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==fa)continue;
DP(v,u);
for(int j=num[u];j;j--){
for(int k=min(num[v],j-);k>=;k--){
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]);
}
}
}
return;
}
void Build(int u,int fa){
num[u]++;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==fa)continue;
w[v]=e[i].dis;
Build(v,u);
num[u]+=num[v];
}
return;
}
int main(){
int i,j;
n=read();q=read();
int u,v,d;
for(i=;i<n;i++){
u=read();v=read();d=read();
add_edge(u,v,d);
add_edge(v,u,d);
}
Build(,);
DP(,);
printf("%d\n",f[][q+]);
return ;
}

洛谷P2015 二叉苹果树的更多相关文章

  1. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  2. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  3. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  4. 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树

    这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...

  5. 洛谷 P2015 二叉苹果树

    老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...

  6. 洛谷—— P2015 二叉苹果树

    https://www.luogu.org/problem/show?pid=2015 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点 ...

  7. 洛谷P2015 二叉苹果树(树状dp)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  8. 洛谷P2015二叉苹果树

    传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...

  9. 洛谷 P2015 二叉苹果树 题解

    题面 裸的树上背包: 设f[u][i]表示在以u为子树的树种选择i条边的最大值,则:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][k]+u到v的边权); #include ...

随机推荐

  1. JMeter学习(三十二)属性和变量

    一.Jmeter中的属性: 1.JMeter属性统一定义在jmeter.properties文件中,我们可以在该文件中添加自定义的属性 2.JMeter属性在测试脚本的任何地方都是可见的(全局),通常 ...

  2. linux部署的java应用,浏览器访问时,报域名解析错误

    工作中,经常需要在Linux环境中部署Tomcat,配置java应用.在浏览器中访问应用时,却报域名解析错误,该怎么样解决呢? 解决方法:关闭防火墙 iptables -L -n     查看已添加的 ...

  3. Ubuntu安装JDK与配置环境变量

    Ubuntu14.04安装JDK与配置环境变量 工具/原料   Ubuntu14.04系统 方法/步骤     先从Oracle官网下载JDK.先选择同意按钮,然后根据自己的系统下载相应版本.我的系统 ...

  4. struts2验证框架1

    <!--该属性指定需要Struts 2处理的请求后缀,该属性的默认值是action,即所有匹配*.action的请求都由Struts 2处理.如果用户需要指定多个请求后缀,则多个后缀之间以英文逗 ...

  5. StringBuffer类 和 StringBuilder类

    上一篇中讲解了String类的用法.那么String有什么特点呢? 字符串特点:字符串是常量,其值在创建后就不能被修改.字符串的内容一旦发生变化,就会创建一个新的对象. 代码验证字符串特点: publ ...

  6. SilverLight自定义ImageButton

    SilverLight中XAML的写法和WPF一样,但是发现在自定义按钮上,没有WPF来的容易,下面说说我制作SilverLight中的ImageButton的一些思路. 在SilverLight中, ...

  7. 10个鲜为人知的WordPress函数

    WordPress功能强大,非常适合开发者使用.说到 WordPress,那么,我们不得不说他的钩子函数.今天,要为大家推荐10个WordPress函数.大多数,都是我们常用的功能,不过,经常不知道如 ...

  8. [CareerCup] 11.5 Search Array with Empty Strings 搜索含有空字符串的数组

    11.5 Given a sorted array of strings which is interspersed with empty strings, write a method to fin ...

  9. 20145222黄亚奇《Java程序设计》课程总结

    20145222黄亚奇<JAVA程序设计>课程总结 每周读书笔记链接汇总 第一周读书笔记 第二周读书笔记 第三周读书笔记 第四周读书笔记 第五周读书笔记 第六周读书笔记 第七周读书笔记 第 ...

  10. 从无重复大数组找TOP N元素的最优解说起

    有一类面试题,既可以考察工程师算法.也可以兼顾实践应用.甚至创新思维,这些题目便是好的题目,有区分度表现为可以有一般解,也可以有最优解.最近就发现了一个这样的好题目,拿出来晒一晒. 1 题目 原文: ...