为与机房各位神犇同步,学习下网络流,百度一下发现竟然那么多做法,最后在两种算法中抉择,分别是Dinic和ISAP算法,问过
CA爷后得知其实效率上无异,所以决定跟随Charge的步伐学习Dinic,所以来写点心得

网络流(最大流)的做法可以进行浅显的理解:

一张图可以认为是一个排水管道,每个点为管道的交叉点,每个边的边权即是这条管道的水的容量,给定一个源点和一个汇点,源点有∞的水量供给,问汇点最大可以获得多少水,所求即为最大流

但是有点题目不一定会给定源点或者汇点,还是因题而异,而且还有很多题目需要进行拆点建图也是复杂的不行。。。(沙茶的我还需要多练多想啊)

Dinic算法:

大体上是这么一个流程:

1.利用BFS分层,即按照距离源点的最短距离来分出层次

2.在分层图上DFS增广,找出这一次的最大流量,然后累入总ans中,值得注意的是,这一阶段中没找到一个当前值now,需要将所有正向边权-now,并把其反向边权+now,这可以使得以后的增广中可以后悔,即可以把之前走错的路再走一遍,保证答案的正确性

3.不断对残余网络进行BFS,直到无法到达源点结束,每次BFS后多次DFS求值直到找不到新的路径

一个很高端详细的讲解BLOG:https://comzyh.com/blog/archives/568/

大体的框架如下:

一个最基本的模板(next数组实现)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct data{
int next,to,v;
}edge[500]={0};
int cnt=1,head[500]={0};
int q[2000],h,t;
int dis[500]={0};
int n,m,ans; void add(int u,int v,int w)
{
cnt++;
edge[cnt].next=head[u];
head[u]=cnt;
edge[cnt].to=v;
edge[cnt].v=w;
} bool bfs()
{
memset(dis,-1,sizeof(dis));
q[1]=1;dis[1]=0;
h=0;t=1;
while (h<t)
{
int j=q[++h],i=head[j];
while (i)//枚举所有与当前节点相连的
{
if (dis[edge[i].to]<0 && edge[i].v>0)//判断是否已经分层过&&是否能流(联通)
{
dis[edge[i].to]=dis[j]+1;
q[++t]=edge[i].to;
}
i=edge[i].next;
}
}
if (dis[n]>0)//如果能够到达汇点,则可以继续,否则就不能继续
return true;
else
return false;
} int dfs(int loc,int low)
{
int ans=0;
if (loc==n) return low;
int i=head[loc];
while (i)//枚举所有与当前点相连的
{
//判断 是否能流(联通) && 它下面那条个点与它是否层数+1(找路径的要求必须找下一层的点) && 当前ans是否大于0
if (edge[i].v>0 && dis[edge[i].to]==dis[loc]+1 && (ans=dfs(edge[i].to,min(low,edge[i].v))))
{
edge[i].v-=ans;//正向边-去当前值
edge[i^1].v+=ans;//反向边+上当前值 ,^1异或即反向边的位置 i为单数为i-1,为双数为i+1
return ans;
}
i=edge[i].next;
}
return 0;
} int main()
{
scanf("%d%d",&m,&n);
for (int i=1; i<=m; i++)
{
int s,e,v;
scanf("%d%d%d",&s,&e,&v);
add(s,e,v);
add(e,s,0);//因为需要反向边在建完正向边后立即建一个反向边,初值为0
}
int ans=0;
while (bfs())
{
int now;
while ((now=dfs(1,0x7fffffff)))
ans+=now;
}//Dinic
printf("%d",ans);
return 0;
}

还有很多不同的规则有不同的模板,以后会更。

2016.1.3 补。

edge【】的范围一定要计算好,好几次都是这个地方开小了,这种错误太低级了。。

建图的过程需要发散一下思维,不能仅仅局限于超级源与超级汇,很多题目的需要建一些次级的点,或者进行拆点,抑或是二分后多次建图多次判定,千变万化。

在建边的时候需要建一条反向边(一般反向初始都是0,为后续反向弧用),当然 有的时候题目中需要开始就建双向边。。要好好把握

2016.1.17补。

当前弧优化(理论上常数级优化实际上优化效果完美):

bool bfs()
{
memset(dis,-1,sizeof(dis));
q[1]=0; dis[0]=1;
h=0;t=1;
while (h<t)
{
int j=q[++h],i=head[j];
while (i)
{
if (edge[i].v>0 && dis[edge[i].to]<0)
{
dis[edge[i].to]=dis[j]+1;
q[++t]=edge[i].to;
}
i=edge[i].next;
}
}
if (dis[num]>0)
return true;
else
return false;
} long long dfs(int loc,long long low)
{
if(loc==num)return low;
long long flow,cost=0;
for(int i=cur[loc];i;i=edge[i].next)
if(dis[edge[i].to]==dis[loc]+1)
{
flow=dfs(edge[i].to,min(low-cost,edge[i].v));
edge[i].v-=flow;edge[i^1].v+=flow;
if(edge[i].v) cur[loc]=i;
cost+=flow;if(cost==low)return low;
}
if(!cost)dis[loc]=-1;
return cost;
} long long dinic()
{
long long temp=0;
while (bfs())
{
for (int i=0; i<=num; i++) cur[i]=head[i];
temp+=dfs(0,maxl);
}
return temp;
}

多路增广+炸点+当前弧优化

学习笔记 --- 最大流Dinic算法的更多相关文章

  1. 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集

    机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...

  2. java 学习笔记之 流、文件的操作

    ava 学习笔记之 流.文件的操作 对于一些基础的知识,这里不再过多的解释, 简单的文件查询过滤操作 package com.wfu.ch08; import java.io.File; import ...

  3. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  6. [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)

    [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...

  7. Effective STL 学习笔记 31:排序算法

    Effective STL 学习笔记 31:排序算法 */--> div.org-src-container { font-size: 85%; font-family: monospace; ...

  8. Power Network(网络流最大流 & dinic算法 + 优化)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24019   Accepted: 12540 D ...

  9. 最大流——Dinic算法

    前面花了很长时间弄明白了压入-重标记的各种方法,结果号称是O(V3)的算法测demo的时候居然TLE了一个点,看了题解发现所有人都是用Dinic算法写的,但它的复杂度O(V2E)明显高于前者,具体是怎 ...

随机推荐

  1. Android开发环境搭建(转)

    转载:http://www.cnblogs.com/zoupeiyang/p/4034517.html#1 引言   在windows安装Android的开发环境不简单也说不上算复杂,本文写给第一次想 ...

  2. bootstrap学习总结-css样式设计(二)

    首先,很感谢各位园友对我的支持,关于bootstrap的学习总结,我会持续更新,如果有写的不对的地方,麻烦各位给我指正出来哈.关于上篇文章,固定布局和流式布局很关键,如果还不太清楚的可以再看看我写的h ...

  3. MySQL数据库学习笔记(二)----MySQL数据类型

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  4. Unity-WIKI 之 DrawArrow

    组件作用 Unity画方向箭头类库,在Scene视图或在Game视图打开Gizmos查看效果 效果预览   wiki地址 http://wiki.unity3d.com/index.php/DrawA ...

  5. Highlighting System

    Highlighting System 法线贴图漫反射着色器 Unity论坛:http://forum.unity3d.com/threads/143043-Highlighting-System-R ...

  6. ZIP文件伪加密

    题目给出图片,那当然是从图片下手啦! 首先下载图片,在Linux系统下用binwalk工具打开,果然不出所料,里面藏有文件! 用dd把它分解出来! 'txt' 格式的文件提取出来!会看到一个Zip压缩 ...

  7. js中的垃圾回收机制

    代码回收规则如下: 1.全局变量不会被回收. 2.局部变量会被回收,也就是函数一旦运行完以后,函数内部的东西都会被销毁. 3.只要被另外一个作用域所引用就不会被回收  (闭包)

  8. High Performance Animations

    http://www.html5rocks.com/zh/tutorials/speed/high-performance-animations/

  9. 【Spring开发】—— Spring注入静态变量

    今天碰到一个问题,我的一个类提供了几种静态方法,静态方法需要另外一个类的实例提供处理,因此就写出了这样的代码: Class aa{ private static XXX xxx; xxx = Bean ...

  10. [Python] 利用commands模块执行Linux shell命令

    http://blog.csdn.net/dbanote/article/details/9414133 http://zhou123.blog.51cto.com/4355617/1312791