Dancing Link --- 模板题 HUST 1017 - Exact cover
1017 - Exact cover
Problem's Link:   http://acm.hust.edu.cn/problem/show/1017
Mean:
给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1
analyse:
初学DLX。
这是DLX处理的最简单的问题,也是模板题。
Time complexity: O(n*d)
Source code:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXNode = ;
const int MAXN = ;
struct DLX
{
int n,m,size;
int U[MAXNode],D[MAXNode],R[MAXNode],L[MAXNode],Row[MAXNode],Col[MAXNode];
int H[MAXN], S[MAXN]; // H[i]---第i行第一个为1的index S[i]---第i列为1的个数
int ansd, ans[MAXN];
void init(int _n,int _m)
{
n = _n;
m = _m;
for(int i = ;i <= m;i++) // 初始化第一行(图中的C[])
{
S[i] = ; // 第i列为1的个数
U[i] = D[i] = i;
L[i] = i-;
R[i] = i+;
}
R[m] = ; L[] = m; // 第一行的最后一个指向第一行的第一个(成环)
size = m; // 从m开始以后的都是普通结点
for(int i = ;i <= n;i++)
H[i] = -; // H[i]---第i行第一个为1的结点编号
}
void Link(int r,int c) // 行 列
{
// D[c] --- 第c列的下指针
S[Col[++size]=c]++; // 普通结点下标++ 第size个结点的列数是c 第c列的结点个数++
Row[size] = r; // 第size个结点的行数是r
D[size] = D[c]; // 第size个结点的下指针是:第0行第c列的下指针
U[size] = c; // 第size个结点的上指针是:第0行第c列 (只有输入行是递增时才可以这样)
U[D[c]] = size; // 第0行第c列的上指针是:size
D[c] = size; // size上面那个的下指针是:size (有点绕)
if(H[r] < ) H[r] = L[size] = R[size] = size; // 该行只有一个结点 左右指针自己指向自己
else
{
R[size] = R[H[r]]; // 成环
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
}
void remove(int c) // 删除列c及其所在的行
{
L[R[c]] = L[c]; R[L[c]] = R[c]; // 左右两个结点连接,屏蔽掉c结点
for(int i = D[c];i != c;i = D[i]) // 屏蔽掉所在的列
for(int j = R[i];j != i;j = R[j])
{
U[D[j]] = U[j];
D[U[j]] = D[j];
--S[Col[j]]; // j所在的列的数目减少
}
}
void resume(int c) //恢复列c缩对应的行
{
for(int i = U[c];i != c;i = U[i])
for(int j = L[i];j != i;j = L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
L[R[c]] = R[L[c]] = c;
}
//d为递归深度
bool Dance(int d)
{
if(R[] == ) // R[0]==R[m] // 第0行已经没有结点
{
ansd = d;
return true;
}
int c = R[];
for(int i = R[];i != ;i = R[i]) // 往右走 ( 找出结点数最少的一列)
if(S[i] < S[c]) //第i列结点个数 < 第c列结点个数
c = i;
remove(c); // 移除列c所对应的行
for(int i = D[c];i != c;i = D[i]) // 找到最小的这一列往下走
{
ans[d] = Row[i];
for(int j = R[i]; j != i;j = R[j]) remove(Col[j]); // 移除该行所对应的列
if(Dance(d+))return true;//递归下一层
for(int j = L[i]; j != i;j = L[j])resume(Col[j]);//倒着恢复
}
resume(c);
return false;
}
}; DLX g;
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
g.init(n,m);
for(int i = ;i <= n;i++) // 行
{
int num,j;
scanf("%d",&num);
while(num--)
{
scanf("%d",&j); // 列
g.Link(i,j);
}
}
if(!g.Dance()) printf("NO\n");
else
{
printf("%d",g.ansd);
for(int i = ;i < g.ansd;i++)
printf(" %d",g.ans[i]);
printf("\n");
}
}
return ;
}
这个博客讲得非常细:
http://www.cnblogs.com/grenet/p/3145800.html
Dancing Link --- 模板题 HUST 1017 - Exact cover的更多相关文章
- HUST 1017 - Exact cover (Dancing Links 模板题)
		
1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...
 - HUST 1017 Exact cover (Dancing links)
		
1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...
 - [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)
		
DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...
 - (简单) HUST 1017 Exact cover , DLX+精确覆盖。
		
Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...
 - HUST 1017 Exact cover(DLX精确覆盖)
		
Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...
 - HUST 1017 Exact cover   dance links
		
学习:请看 www.cnblogs.com/jh818012/p/3252154.html 模板题,上代码 #include<cstdio> #include<cstring> ...
 - [HUST 1017] Exact cover
		
Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6012 Solved: 3185 DESCRIP ...
 - [DLX] hust 1017 Exact cover
		
题意: 给你N个包,要拿到M个东西(编号1~M每一个仅仅能有一个) 然后每一个包里有k个东西,每一个东西都有编号. 思路: 舞蹈连模板题 代码: #include"stdio.h" ...
 - hustoj 1017 - Exact cover   dancing link
		
1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 5851 Solved: 3092 ...
 
随机推荐
- java.lang.IllegalArgumentException: You must not call setTag() on a view Glide is targeting
			
将原有项目图片加载框架picasso改为glide,关于picasso和glide文档就自行查阅相关资料 显示 图片 例子 Glide.with(mContext).load(imageUrl).pl ...
 - python环境中运行程序
			
运行Python程序,我们比较常用的是直接在Windows命令提示窗口或者Linux终端或shell窗口中,直接:Python *.py,或者在Linux环境下,在投不中,加入: #!/usr/bin ...
 - lua中常量的实现及表的深拷贝实现
			
废话:好久没在这里写博客了...主要原因是我买了个域名hanxi.info并在github上搭建了个人博客... lua中默认是没有c中的const常量的,在csdn上找到了一个使用setmetata ...
 - php 生成 Json
			
php 生成 Json 部分 <?php $arr_result = array(); //返回值 $arr_result['result'] = '0'; $arr_result['calle ...
 - 通过微信查找SAP TCODE代码
			
输入T-CODE查询作用: (包含了16000+ 个SAP T-CODE),扫码关注后可以体验效果 再也不用去记那么多T-CODE用途了 还不试试看 输入关键词:"利润中心" &q ...
 - 网络存储-Samba、NAS---未知的用户名或错误密码
			
项目中的文件需要保存到网络存储设备中,之前用的是NAS.因没来得及采购就先用Samba顶上.代码发现通用…… 一.定义: Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器 ...
 - Android开发艺术探索笔记—— View(一)
			
Android开发艺术探索笔记 --View(一) View的基础知识 什么是View View是Android中所有控件的基类.是一种界面层控件的抽象. View的位置参数 参数名 获取方式 含义 ...
 - 对依赖倒置原则(DIP)及Ioc、DI、Ioc容器的一些理解
			
1.概述 所谓依赖倒置原则(Dependence Inversion Principle)就是要依赖于抽象,不要依赖于具体.简单的说就是要求对抽象进行编程,不要对实现进行编程,这样就降低了客户与实现模 ...
 - 华为手机连不上adb解决方法
			
1.关闭qq,豌豆荚等一连接usb自动侦测手机的程序... 2.安装hisuite软件,这个应该跟相应的版本有关,新版本最好要安装这个软件,否则也可能导致怎么都连接不上 3.打开usb调试功能 4.a ...
 - STM32 程序所占用空间计算 && FLASH存储的起始地址计算
			
程序编译完成,会乘车program size .. 对STM32容量选型或者 计算FLASH 充当EEPROM起始地址时会用到此参数. 按照下面截图 程序空间 = (16700+732+4580)/ ...