http://poj.org/problem?id=1556

首先路径的每条线段一定是端点之间的连线。证明?这是个坑...反正我是随便画了一下图然后就写了..

然后re是什么节奏?我记得我开够了啊...然后再开大点才a...好囧啊.

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const double eps=1e-6;
int dcmp(double x) { return abs(x)<eps?0:(x<0?-1:1); }
struct ipoint { double x, y; };
double icross(ipoint &a, ipoint &b, ipoint &c) {
static double x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
int ijiao(ipoint &p1, ipoint &p2, ipoint &q1, ipoint &q2) {
return (dcmp(icross(p1, q1, q2))^dcmp(icross(p2, q1, q2)))==-2 &&
(dcmp(icross(q1, p1, p2))^dcmp(icross(q2, p1, p2)))==-2;
} const int N=1000;
struct dat { int next, to; double w; }e[N<<2];
int ihead[N], cnt;
void add(int u, int v, double w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w;
}
double spfa(int s, int t, int n) {
static double d[N];
static int q[N], front, tail, u, v;
static bool vis[N];
front=tail=0;
for1(i, 0, n) vis[i]=0, d[i]=1e99;
d[s]=0; q[tail++]=s; vis[s]=1;
while(front!=tail) {
u=q[front++]; if(front==N) front=0; vis[u]=0;
rdm(u, i) if(d[v=e[i].to]+eps>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
if(!vis[v]) {
vis[v]=1;
if(d[v]<d[q[front]]+eps) {
--front; if(front<0) front+=N;
q[front]=v;
}
else { q[tail++]=v; if(tail==N) tail=0; }
}
}
}
return d[t];
} ipoint p[N], line[N*3][2];
int n, pn, ln; bool check(ipoint &x, ipoint &y) {
for1(i, 1, ln) if(ijiao(x, y, line[i][0], line[i][1])) return false;
return true;
}
double sqr(double x) { return x*x; }
double dis(ipoint &x, ipoint &y) { return sqrt(sqr(x.x-y.x)+sqr(x.y-y.y)); } int main() {
while(read(n), n!=-1) {
ln=0; pn=0;
++pn; p[pn].x=0; p[pn].y=5;
++pn; p[pn].x=10; p[pn].y=5;
static double rx, ry[4];
while(n--) {
scanf("%lf", &rx);
rep(k, 4) scanf("%lf", &ry[k]);
++ln; line[ln][0]=(ipoint){rx, 0}; line[ln][1]=(ipoint){rx, ry[0]};
++ln; line[ln][0]=(ipoint){rx, ry[1]}; line[ln][1]=(ipoint){rx, ry[2]};
++ln; line[ln][0]=(ipoint){rx, ry[3]}; line[ln][1]=(ipoint){rx, 10};
rep(k, 4) ++pn, p[pn].x=rx, p[pn].y=ry[k];
}
for1(i, 1, pn) for1(j, 1, pn) if(i!=j && check(p[i], p[j])) add(i, j, dis(p[i], p[j]));
printf("%.2f\n", spfa(1, 2, pn)); memset(ihead, 0, sizeof(int)*(pn+1));
cnt=0;
}
return 0;
}

  


Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source

【POJ】1556 The Doors(计算几何基础+spfa)的更多相关文章

  1. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  2. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  3. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  4. poj 1556 The Doors

    The Doors Time Limit: 1000 MS Memory Limit: 10000 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  5. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  6. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  7. POJ 1556 The Doors(线段交+最短路)

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5210   Accepted: 2124 Descrip ...

  8. poj 1556 The Doors(线段相交,最短路)

      The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7430   Accepted: 2915 Descr ...

  9. POJ 1556 The Doors 线段判交+Dijkstra

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6734   Accepted: 2670 Descrip ...

随机推荐

  1. 关于C语言的printf输出问题

    前端面试的时候老总居然问这个问题,有点震惊…… #include <stdio.h> #include <stdlib.h> void main() { ; printf(&q ...

  2. i++和++i的深入理解

    研究了很久,对这个一直很模糊.相信大家,看完这篇文章,会有更深一层的认识! 一直以来,++ --语法浪费了太多人的时间.说句实在话,++ -- 在C语言中其实是一个很细节的语法,除了表达简练外,真的没 ...

  3. linux下复制一个文件的内容到另一个文件

    cat path/to/file/filename1 >> path/to/file/filename2 例如: cat id_rsa.pub >> ~/.ssh/author ...

  4. Junit4测试

    1.junit初级入门 2.常用注解 3.运行流程 4.测试套件使用 5.参数化设置

  5. 在SQLServer处理中的一些问题及解决方法 NEWSEQUENTIALID()

    一.DBLINK性能问题select * from dbsource.dbname.dbo.table where guid in (select guid from tablechangelog w ...

  6. NEFU 1146 又见A+B

    又见a+b Problem:1146 Time Limit:1000ms Memory Limit:65535K Description 给定两个非负整数A,B,求他们的和. Input 多组输入,每 ...

  7. Maximum sum(poj 2479)

    题意:给一段数列,将这个数列分成两部分,使两部分的最大子段和的和最大,输出和 /* 看数据没想到是(O)n的算法,求出从前向后的最大子段和和从后向前的最大子段和, 然后枚举断点. 第一次提交不小心折在 ...

  8. 一箭双雕打开Genesis

    打开记事本,将如下内容填入,保存时将后缀名改为bat @ ECHO 正在清理垃圾文件...del C:\tmp\*.* /f /q@ ECHO 清理完毕@ ECHO OFF@ ECHO.@ ECHO. ...

  9. Struts2中配置默认Action

    1.当访问的Action不存在时,页面会显示错误信息,可以通过配置默认Action处理用户异常的操作:2.配置方法:    在struts.xml文件中的<package>下添加如下内容: ...

  10. [转]使用VC/MFC创建一个线程池

    许多应用程序创建的线程花费了大量时间在睡眠状态来等待事件的发生.还有一些线程进入睡眠状态后定期被唤醒以轮询工作方式来改变或者更新状态信息.线程池可以让你更有效地使用线程,它为你的应用程序提供一个由系统 ...