http://poj.org/problem?id=1556

首先路径的每条线段一定是端点之间的连线。证明?这是个坑...反正我是随便画了一下图然后就写了..

然后re是什么节奏?我记得我开够了啊...然后再开大点才a...好囧啊.

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const double eps=1e-6;
int dcmp(double x) { return abs(x)<eps?0:(x<0?-1:1); }
struct ipoint { double x, y; };
double icross(ipoint &a, ipoint &b, ipoint &c) {
static double x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
int ijiao(ipoint &p1, ipoint &p2, ipoint &q1, ipoint &q2) {
return (dcmp(icross(p1, q1, q2))^dcmp(icross(p2, q1, q2)))==-2 &&
(dcmp(icross(q1, p1, p2))^dcmp(icross(q2, p1, p2)))==-2;
} const int N=1000;
struct dat { int next, to; double w; }e[N<<2];
int ihead[N], cnt;
void add(int u, int v, double w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w;
}
double spfa(int s, int t, int n) {
static double d[N];
static int q[N], front, tail, u, v;
static bool vis[N];
front=tail=0;
for1(i, 0, n) vis[i]=0, d[i]=1e99;
d[s]=0; q[tail++]=s; vis[s]=1;
while(front!=tail) {
u=q[front++]; if(front==N) front=0; vis[u]=0;
rdm(u, i) if(d[v=e[i].to]+eps>d[u]+e[i].w) {
d[v]=d[u]+e[i].w;
if(!vis[v]) {
vis[v]=1;
if(d[v]<d[q[front]]+eps) {
--front; if(front<0) front+=N;
q[front]=v;
}
else { q[tail++]=v; if(tail==N) tail=0; }
}
}
}
return d[t];
} ipoint p[N], line[N*3][2];
int n, pn, ln; bool check(ipoint &x, ipoint &y) {
for1(i, 1, ln) if(ijiao(x, y, line[i][0], line[i][1])) return false;
return true;
}
double sqr(double x) { return x*x; }
double dis(ipoint &x, ipoint &y) { return sqrt(sqr(x.x-y.x)+sqr(x.y-y.y)); } int main() {
while(read(n), n!=-1) {
ln=0; pn=0;
++pn; p[pn].x=0; p[pn].y=5;
++pn; p[pn].x=10; p[pn].y=5;
static double rx, ry[4];
while(n--) {
scanf("%lf", &rx);
rep(k, 4) scanf("%lf", &ry[k]);
++ln; line[ln][0]=(ipoint){rx, 0}; line[ln][1]=(ipoint){rx, ry[0]};
++ln; line[ln][0]=(ipoint){rx, ry[1]}; line[ln][1]=(ipoint){rx, ry[2]};
++ln; line[ln][0]=(ipoint){rx, ry[3]}; line[ln][1]=(ipoint){rx, 10};
rep(k, 4) ++pn, p[pn].x=rx, p[pn].y=ry[k];
}
for1(i, 1, pn) for1(j, 1, pn) if(i!=j && check(p[i], p[j])) add(i, j, dis(p[i], p[j]));
printf("%.2f\n", spfa(1, 2, pn)); memset(ihead, 0, sizeof(int)*(pn+1));
cnt=0;
}
return 0;
}

  


Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source

【POJ】1556 The Doors(计算几何基础+spfa)的更多相关文章

  1. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  2. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  3. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  4. poj 1556 The Doors

    The Doors Time Limit: 1000 MS Memory Limit: 10000 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  5. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  6. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  7. POJ 1556 The Doors(线段交+最短路)

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5210   Accepted: 2124 Descrip ...

  8. poj 1556 The Doors(线段相交,最短路)

      The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7430   Accepted: 2915 Descr ...

  9. POJ 1556 The Doors 线段判交+Dijkstra

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6734   Accepted: 2670 Descrip ...

随机推荐

  1. 【GoLang】GoLang 微服务、开源库等参考资料

    参考资料: GoLang书籍: https://github.com/dariubs/GoBooksGo名库: https://github.com/Unknwon/go-rock-libraries ...

  2. C++代码重用——包含

    #ifndef PAIRS_H #define PAIRS_H #include <iostream> #include <valarray> template <cla ...

  3. js指定标签的id只能添加不能删除

    <body> <form id="form1" runat="server"> <div> <input id=&qu ...

  4. Android dp px转化公式

    // DisplayMetrics metrics = getResources().getDisplayMetrics(); // int statusBarHeight = (int) Math. ...

  5. PO/VO/BO等对象模型

    PO :persistent object持久对象 1 .有时也被称为Data对象,对应数据库中的entity,可以简单认为一个PO对应数据库中的一条记录. 2 .在hibernate持久化框架中与i ...

  6. PrincipalView的使用参数

    4 G:\PrincipalView\model\m426.off 注意,路径是绝对路径,所以如果程序移位的话,要注意修改: 路径中不能包含空格

  7. 菜鸟学SSH(十五)——简单模拟Hibernate实现原理

    之前写了Spring的实现原理,今天我们接着聊聊Hibernate的实现原理,这篇文章只是简单的模拟一下Hibernate的原理,主要是模拟了一下Hibernate的Session类.好了,废话不多说 ...

  8. hdu 1012:u Calculate e(数学题,水题)

    u Calculate e Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. Android下拉刷新完全解析,教你如何一分钟实现下拉刷新功能 (转)

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/9255575 最 近项目中需要用到ListView下拉刷新的功能,一开始想图省事,在 ...

  10. Effective C++笔记:构造/析构/赋值运算

    条款05:了解C++默默编写并调用哪些函数 默认构造函数.拷贝构造函数.拷贝赋值函数.析构函数构成了一个类的脊梁,只有良好的处理这些函数的定义才能保证类的设计良好性. 当我们没有人为的定义上面的几个函 ...