【35.43%】【hdu 4347】The Closest M Points
Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 98304/98304 K (Java/Others)
Total Submission(s): 3520 Accepted Submission(s): 1247
between two points. The Euclidean distance between points p and q is the length of the line segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn)
are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:

Can you help him solve this problem?
the coordinates of a point. This followed by a line with one positive integer t, representing the number of queries,1 <= t <=10000.each query contains two lines. The k integers in the first line represent the given point. In the second line, there is one integer
m, the number of closest points you should find,1 <= m <=10. The absolute value of all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It is guaranteed that the answer can only be formed in one ways. The distances from the given point to all the nearest m+1 points are different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.
3 2
1 1
1 3
3 4
2
2 3
2
2 3
1
the closest 2 points are:
1 3
3 4
the closest 1 points are:
1 3
【题解】
kd-tree,虽然不是曼哈顿距离。但是还是能够从曼哈顿距离里面得到启发的。
本来的估价函数的原则是
如果在矩形内就返回0.这点不变。
然后在矩形外就返回到这个矩形的最小曼哈顿距离。现在改成欧几里得距离就可以了。
然后返回这个距离作为估价函数。
取估价函数较小的那个方向更新解就可以了。
前k小的话可以加一个队列维护。因为k最大为10,所以没必要写二分。
具体的看代码吧。
着重看一下估价函数就好。
//数据范围实际上是可以不用定义long long的。但是保险起见。
//k维的并没有什么可怕的。。就是for 0->1变成for 0->k-1
//然后要注意多个维的点的输出最后一个维的坐标后面不能多空格。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; const int MAXN = 60000;
const int MAXK_TH = 20;
const long long INF = 4410000000000000000; struct point
{
long long d[5], mi_n[5], ma_x[5];
int l, r;
}; struct data2
{
long long dis, d[5];
}; int n, k, root, now, k_th;
point t[MAXN], p[MAXN], op;
long long ans;
data2 dl[MAXK_TH]; bool cmp(point a, point b)
{
if (a.d[now] < b.d[now])
return true;
return false;
} void push_up(int rt)
{
int l = t[rt].l, r = t[rt].r;
for (int i = 0; i <= k - 1; i++)
{
if (l)
{
t[rt].ma_x[i] = max(t[l].ma_x[i], t[rt].ma_x[i]);
t[rt].mi_n[i] = min(t[l].mi_n[i], t[rt].mi_n[i]);
}
if (r)
{
t[rt].ma_x[i] = max(t[r].ma_x[i], t[rt].ma_x[i]);
t[rt].mi_n[i] = min(t[r].mi_n[i], t[rt].mi_n[i]);
}
}
} int build(int begin, int end, int fx)
{
int m = (begin + end) >> 1;
now = fx;
nth_element(p + begin, p + m, p + end + 1, cmp);
t[m] = p[m];
for (int i = 0; i <= k - 1; i++)
t[m].ma_x[i] = t[m].mi_n[i] = t[m].d[i];
if (begin < m)
t[m].l = build(begin, m - 1, (fx + 1) % k);
if (m < end)
t[m].r = build(m + 1, end, (fx + 1) % k);
push_up(m);
return m;
} void input_data()
{
memset(t, 0, sizeof(t));
for (int i = 1; i <= n; i++)
for (int j = 0; j <= k - 1; j++)
scanf("%lld", &p[i].d[j]);
root = build(1, n, 0);
} long long get_dis(point a, point b)
{
long long temp = 0;
for (int i = 0; i <= k - 1; i++)
temp += (a.d[i] - b.d[i])*(a.d[i] - b.d[i]);
return temp;
} long long sqr(long long x)
{
return x*x;
} long long gujia_min(int rt) //某个子树的估价最小函数
{
long long temp = 0;
for (int i = 0; i <= k - 1; i++)
{
//min(sqr(t[rt].ma_x[i] - op.d[i]), sqr(t[rt].mi_n[i] - op.d[i]));
long long temp1 = op.d[i] - t[rt].ma_x[i];
long long temp2 = t[rt].mi_n[i] - op.d[i];
if (temp1 > 0)
temp += sqr(op.d[i] - t[rt].ma_x[i]);
if (temp2 > 0)
temp += sqr(t[rt].mi_n[i] - op.d[i]);
}
return temp;
} void query_min(int rt)
{
long long dis = get_dis(t[rt], op);
int tempk = k_th;
while (dl[tempk].dis > dis)
{
tempk--;
if (!tempk)
break;
}
if (tempk != k_th) //如果比第k小的还小 就往前找一个合适的位置放进去。
{//然后第k小的就被挤掉 更新了。
for (int i = k_th; i >= tempk + 2; i--)
dl[i] = dl[i - 1];
dl[tempk + 1].dis = dis;
for (int i = 0; i <= k - 1; i++)
dl[tempk + 1].d[i] = t[rt].d[i];
}
long long gl = INF, gr = INF;
int l = t[rt].l, r = t[rt].r;
if (l)
gl = gujia_min(l);
if (r)
gr = gujia_min(r);
if (gl < gr)
{
if (gl < dl[k_th].dis)
query_min(l);
if (gr < dl[k_th].dis)
query_min(r);
}
else
{
if (gr < dl[k_th].dis)
query_min(r);
if (gl < dl[k_th].dis)
query_min(l);
}
} void output_ans()
{
int t;
scanf("%d", &t);
while (t--)
{
for (int i = 0; i <= k - 1; i++)
scanf("%lld", &op.d[i]);
scanf("%d", &k_th);
for (int i = 0; i <= k_th; i++)
dl[i].dis = INF;
ans = INF;
query_min(root);
printf("the closest %d points are:\n", k_th);
for (int i = 1; i <= k_th; i++)
{
for (int j = 0; j <= k - 2; j++)
printf("%lld ", dl[i].d[j]);
printf("%lld\n", dl[i].d[k - 1]);//最后一维的坐标后面不能加空格。
}
}
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
while (~scanf("%d%d", &n, &k)) //一直好奇前面的波浪号一样的是啥
{
input_data();
output_ans();
}
return 0;
}
【35.43%】【hdu 4347】The Closest M Points的更多相关文章
- 【改革春风吹满地 HDU - 2036 】【计算几何-----利用叉积计算多边形的面积】
利用叉积计算多边形的面积 我们都知道计算三角形的面积时可以用两个邻边对应向量积(叉积)的绝对值的一半表示,那么同样,对于多边形,我们可以以多边形上的一个点为源点,作过该点并且过多边形其他点中的某一个的 ...
- 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)
奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- 【二分】【最长上升子序列】HDU 5489 Removed Interval (2015 ACM/ICPC Asia Regional Hefei Online)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5489 题目大意: 一个N(N<=100000)个数的序列,要从中去掉相邻的L个数(去掉整个区间 ...
- 【贪心】【模拟】HDU 5491 The Next (2015 ACM/ICPC Asia Regional Hefei Online)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5491 题目大意: 一个数D(0<=D<231),求比D大的第一个满足:二进制下1个个数在 ...
- 【动态规划】【二分】【最长上升子序列】HDU 5773 The All-purpose Zero
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5773 题目大意: T组数据,n个数(n<=100000),求最长上升子序列长度(0可以替代任何 ...
- 【动态规划】【KMP】HDU 5763 Another Meaning
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5763 题目大意: T组数据,给两个字符串s1,s2(len<=100000),s2可以被解读成 ...
- 【归并排序】【逆序数】HDU 5775 Bubble Sort
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 题目大意: 冒泡排序的规则如下,一开始给定1~n的一个排列,求每个数字在排序过程中出现的最远端 ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- 【规律】【贪心】【数学】HDU 5573 Binary Tree
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5573 题目大意: 从1走到第k层,下一层的数是上一层的数*2或者*2+1,可以选择加上或者减去走的数 ...
随机推荐
- 39.mutex 的lock_guard与unique_lock
#include <iostream> #include <thread> #include <mutex> using namespace std; #defin ...
- MyEclipse 2016 安装/破解
MyEclipse2016 C1 已经出现了!感觉好像不错的样子! 不多说了,开整... 好熟悉的界面,点击Next! 如上图标注1所示,请修改安装目录! 根据自己的喜好可以选择不同的版本,也可以安装 ...
- RecyclerView 展示多种类型Item数据
一.多Item布局实现(MultipleItem) 如果之前你用过ListView实现过此功能,那么你一定对下面这两个方法并不陌生 @Override public int getItemViewTy ...
- 随手记录---transform 属性
其实平时很少用到transform属性,一些放大缩小用width.height可以改变,一些位置变换,更是有margin,而一些旋转.2D.3D变换也不怎么能用得到.不过最近接触了一些图片的缩放,觉得 ...
- Node.js安装+环境配置【Windows版】
Node.js安装及环境配置之Windows篇 一.安装环境 1.本机系统:Windows 10 Pro(64位)2.Node.js:v6.9.2LTS(64位) 二.安装Node.js步骤 1.下 ...
- C#与C++ DLL的交互
C#与C++交互,总体来说可以有两种方法: 1.利用C++/CLI作为代理中间层 2.利用PInvoke实现直接调用 第一种方法:实现起来比较简单直观,并且可以实现C#调用C++所写的类,但是问题 ...
- WCF 字节数据传输
准备工作 1.新建一个工程,添加一个WCF服务库, 然后公共的类库, 添加一个默认可序列化的的CompositeType类用于压缩. [Serializable] public class Compo ...
- 1、DOM4J简介
1.DOM4J简介 DOM4J是 dom4j.org 出品的一个开源 XML 解析包.DOM4J应用于 Java 平台,采用了 Java 集合框架并完全支持 DOM,SAX 和 JAXP. DOM4J ...
- HDU 2068 RPG的错排(错排公式 + 具体解释)
RPG的错排 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- .net core 分布式性能计数器的实现
1.特别鸣谢张善友老师的指点; 2.分布式性能计数器链接地址:https://mp.weixin.qq.com/s/hPV_bNZD4XmjP0QTE54pWA