题意:n(n <= 20)个项目,m(m <= 50)个技术问题,做完一个项目能够有收益profit (<= 1000),做完一个项目必须解决对应的技术问题,解决一个技术问题须要付出cost ( <= 1000),技术问题之间有先后依赖关系,求最大收益。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4971

——>>项目必须解决相应的技术问题,技术问题之间也存在依赖,相应闭合图,最大收益相应最大权和。。于是,最大权闭合图,最小割,最大流上场。。

建图:

1)超级源S = n + m, 超级汇T = n + m + 1

2)对于每一个项目i:S -> i (profit[i])

3)对于每一个技术问题i:i + n -> T (cost[i])

4)对于项目 i 必须解决的技术问题 j:i -> j + n (INF)

5)对于技术问题 j 必须先解决的技术问题
i: i + n -> j + n (INF) (这里我认为应为:j + n -> i + n (INF),这样理解才对,但是对不上例子,提交也WA。。)

然后,Dinic上场。。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> using std::queue;
using std::min; const int MAXN = 20 + 50 + 10;
const int MAXM = 20 + 1000 + 2500 + 50 + 10;
const int INF = 0x3f3f3f3f; int n, m, sum;
int hed[MAXN];
int cur[MAXN], h[MAXN];
int ecnt;
int S, T; struct EDGE
{
int to;
int cap;
int flow;
int nxt;
} edges[MAXM << 1]; void Init()
{
ecnt = 0;
memset(hed, -1, sizeof(hed));
sum = 0;
} void AddEdge(int u, int v, int cap)
{
edges[ecnt].to = v;
edges[ecnt].cap = cap;
edges[ecnt].flow = 0;
edges[ecnt].nxt = hed[u];
hed[u] = ecnt++;
edges[ecnt].to = u;
edges[ecnt].cap = 0;
edges[ecnt].flow = 0;
edges[ecnt].nxt = hed[v];
hed[v] = ecnt++;
} void Read()
{
int profit, cost, pc, tp; scanf("%d%d", &n, &m);
S = n + m;
T = n + m + 3;
for (int i = 0; i < n; ++i)
{
scanf("%d", &profit);
AddEdge(S, i, profit);
sum += profit;
}
for (int i = 0; i < m; ++i)
{
scanf("%d", &cost);
AddEdge(i + n, T, cost);
}
for (int i = 0; i < n; ++i)
{
scanf("%d", &pc);
for (int j = 0; j < pc; ++j)
{
scanf("%d", &tp);
AddEdge(i, tp + n, INF);
}
}
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < m; ++j)
{
scanf("%d", &tp);
if (tp)
{
AddEdge(i + n, j + n, INF);
}
}
}
} bool Bfs()
{
memset(h, -1, sizeof(h));
queue<int> qu;
qu.push(S);
h[S] = 0;
while (!qu.empty())
{
int u = qu.front();
qu.pop();
for (int e = hed[u]; e != -1; e = edges[e].nxt)
{
int v = edges[e].to;
if (h[v] == -1 && edges[e].cap > edges[e].flow)
{
h[v] = h[u] + 1;
qu.push(v);
}
}
} return h[T] != -1;
} int Dfs(int u, int cap)
{
if (u == T || cap == 0) return cap; int flow = 0, subFlow;
for (int e = cur[u]; e != -1; e = edges[e].nxt)
{
cur[u] = e;
int v = edges[e].to;
if (h[v] == h[u] + 1 && (subFlow = Dfs(v, min(cap, edges[e].cap - edges[e].flow))) > 0)
{
flow += subFlow;
edges[e].flow += subFlow;
edges[e ^ 1].flow -= subFlow;
cap -= subFlow;
if (cap == 0) break;
}
} return flow;
} int Dinic()
{
int maxFlow = 0; while (Bfs())
{
memcpy(cur, hed, sizeof(hed));
maxFlow += Dfs(S, INF);
} return maxFlow;
} int main()
{
int t, kase = 0; scanf("%d", &t);
while (t--)
{
Init();
Read();
printf("Case #%d: %d\n", ++kase, sum - Dinic());
} return 0;
}

hdu - 4971 - A simple brute force problem.(最大权闭合图)的更多相关文章

  1. HDU 4971 A simple brute force problem.

    A simple brute force problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged o ...

  2. HDU 4971 - A simple brute force problem【最大权闭合图】

    有n(20)个工程,完成每个工程获得收益是p[i],m(50)个需要解决的难题,解决每个难题花费是c[i] 要完成第i个工程,需要先解决ki个问题,具体哪些问题,输入会给出 每个难题之间可能有依赖关系 ...

  3. 【最小割】HDU 4971 A simple brute force problem.

    说是最大权闭合图.... 比赛时没敢写.... 题意 一共同拥有n个任务,m个技术 完毕一个任务可盈利一些钱,学习一个技术要花费钱 完毕某个任务前须要先学习某几个技术 可是可能在学习一个任务前须要学习 ...

  4. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  5. A simple brute force problem.

    hdu4971:http://acm.hdu.edu.cn/showproblem.php?pid=4971 题意:给你n个项目,每完成一个项目会有一定的收益,但是为了完成某个项目,要先学会一些技能, ...

  6. HDU5772 String problem 最大权闭合图+巧妙建图

    题意:自己看吧(不是很好说) 分析: 网络流:最大权闭合子图. 思路如下: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得 ...

  7. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  8. HDU 3879 && BZOJ 1497:Base Station && 最大获利 (最大权闭合图)

    http://acm.hdu.edu.cn/showproblem.php?pid=3879 http://www.lydsy.com/JudgeOnline/problem.php?id=1497 ...

  9. hdu 3061 Battle 最大权闭合图

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3061 由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅.而他上任的第一天,就面对了一场极其困难的 ...

随机推荐

  1. java导出word直接下载

    导出word工具类 package util; import java.io.IOException; import java.io.Writer; import java.util.Map; imp ...

  2. Java中使用org.json和json-lib解析JSON

    文章目录  [隐藏] 一.JavaProject中org.json解析JSON 1.JSON的org.son-api下载 1)JSON网址 2)JSON的java解析org.json-api网址 3) ...

  3. [RxJS] Multicast with a selector argument, as a sandbox

    Let's explore a different use of the multicast() operator in RxJS, where you can provide a selector ...

  4. swift 旋转加载动画

    https://github.com/naoyashiga/RPLoadingAnimation

  5. Spring boot(二) springboot + jsp

    官方不推荐JSP在Spring Boot中使用! 一.添加依赖 在pim.xml 里面添加以下 jsp依赖 <dependency> <groupId>org.springfr ...

  6. [CSS] No selectable effect

    .noselect { -webkit-touch-callout: none; /* iOS Safari */ -webkit-user-select: none; /* Chrome/Safar ...

  7. html5 在移动端的缩放控制

    viewport 语法介绍: 01 <!-- html document --> 02 <meta name="viewport" 03     content= ...

  8. windows 下安装git

    Git是当今最流行的版本控制软件,它包含了许多高级工具,这里小编就讲一下Git的安装. 首先如下图:(点击next) 第二步:文件位置存储,可根据自己盘的情况安装 第三步:安装配置文件,自己需要的都选 ...

  9. c#List泛型数据扩展,把List&lt;&gt;型数据格式化成List&lt;SelectListItem&gt;,用来作dropdownlist的数据

    代码例如以下 public static List<SelectListItem> CreateSelect<T>(this IList<T> t, string ...

  10. want cry -- 137,139,445

    通过wireshark抓包发现smb的请求报文,目的端口为445,没有应答报文 之前设置了“阻止连接”导致smb访问被拒绝.修改为要求对连接进行加密 就可以访问