这个题的原始方法谁都会,但是n^3会T。之后直接优化,特别简单,就是每次处理出来每层的最大值,而不用枚举。之前没这么做是因为觉得在同一棵树的时候没有下落,所以不能用这个方法。后来想明白了,在同一棵树上的时候,一步步爬一定好于跳跃。然后就没什么了。

题干:

Description
雷涛的小猫雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学
生宿舍管理条例的)。 在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了。可是有一天,雷涛下课回
到寝室,却发现小猫不见了!经过一番寻找,才发现她正趴在阳台上对窗外的柿子树发呆…在北京大学的校园里,
有许多柿子树,在雷涛所在的宿舍楼前,就有N棵。并且这N棵柿子树每棵的高度都是H。冬天的寒冷渐渐笼罩了大
地,树上的叶子渐渐掉光了,只剩下一个个黄澄澄的柿子,看着非常喜人。而雷涛的小猫恰好非常的爱吃柿子,看
着窗外树上的柿子,她十分眼馋,于是决定利用自己敏捷的跳跃能力跳到树上去吃柿子。小猫可以从宿舍的阳台上
跳到窗外任意一棵柿子树的树顶。之后,她每次都可以在当前位置沿着当前所在的柿子树向下跳1单位距离。当然
,小猫的能力远不止如此,她还可以在树之间跳跃。每次她都可以从当前这棵树跳到另外的任意一棵,在这个过程
中,她的高度会下降Delta单位距离。每个时刻,只要她所在的位置有柿子,她就可以吃掉。整个“吃柿子行动”
一直到小猫落到地面上为止。雷涛调查了所有柿子树上柿子的生长情况。饱很想知道,小猫从阳台出发,最多能吃
到多少柿子?他知道写一个程序可以很容易的解决这个问题,但是他现在懒于写任何代码。于是,现在你的任务就
是帮助雷涛写一个这样的程序。左图是N=,H=,Delta=2的一个例子。小猫按照图示路线进行跳跃,可以吃到最
多的8个柿子
Input
第一行三个整数N,H,Delta
接下来N行,每行一个整数Ni代表第i个树上柱子的数量
接下来Ni个整数,每个整数Tij代表第i个树的高度Tij上有一个柿子
<=N,H<=
<=Ni<=
<=Delta<=N
<=Ti<=H
输入文件不大于40960Kb
Output 小猫能吃到多少柿子
Sample Input Sample Output

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
int n,m,tot = ;
int a[],num[];
int lz[][];
int sz[][];
int dp[][];
int k;
int main()
{
read(n);read(k);
duke(i,,n)
{
read(a[i]);
if(a[i] == -)
num[++tot] = i;
}
duke(i,,n)
{
duke(j,,k)
{
if(a[i - ] > j)
sz[i][j] = sz[i - ][j] + ;
else
sz[i][j] = sz[i - ][j];
}
}
lv(i,n - ,)
{
duke(j,,k)
{
if(a[i + ] < j && a[i + ] != -)
lz[i][j] = lz[i + ][j] + ;
else
lz[i][j] = lz[i + ][j];
}
}
duke(i,,n)
{
duke(j,,k)
{
if(a[i] != -)
{
dp[i][j] = dp[i - ][j];
continue;
}
else
{
dp[i][j] = INF;
duke(l,,k)
{
dp[i][j] = min(dp[i - ][l] + lz[i][j] + sz[i][j],dp[i][j]);
}
}
}
}
int ans = INF;
duke(i,,k)
{
ans = min(ans,dp[n][i]);
}
duke(i,,n)
{
if(a[i] != -)
{
ans += sz[i][a[i]];
}
}
printf("%d\n",ans);
return ;
}
/*
5 4
4 2 -1 -1 3
*/

B1270 [BeijingWc2008]雷涛的小猫 dp的更多相关文章

  1. BZOJ 1270: [BeijingWc2008]雷涛的小猫( dp )

    简单的dp.. dp(i,j) = max(dp(x,y))+cnt[i][j], (x,y)->(i,j)是合法路径. 设f(i)= max(dp(x,y))(1≤x≤N, 1≤y≤i), g ...

  2. bzoj1270 BeijingWc2008 雷涛的小猫 DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1270 比较水的一道dp f1[i]为高度为i的时候的最大值 f2[i]为当前高度在第i棵树 ...

  3. 【BZOJ1270】1270: [BeijingWc2008]雷涛的小猫 DP

    Description   Input Output Sample Input Sample Output 8 HINT Source 唉这么蠢的Dp没一下子看出来,Dp真是太弱了啦. #includ ...

  4. 【bzoj1270】[BeijingWc2008]雷涛的小猫 dp

    题目描述   输入 输出 样例输入 样例输出 8 题解 dp 设f[i][j]表示在第i棵树的j高度时最多吃到的柿子数. 那么只有两种可能能够到达这个位置:滑下来.跳下来. 滑下来直接用f[i][j+ ...

  5. bzoj 1270: [BeijingWc2008]雷涛的小猫 简单dp+滚动数组

    1270: [BeijingWc2008]雷涛的小猫 Time Limit: 50 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descrip ...

  6. BZOJ1270: [BeijingWc2008]雷涛的小猫

    1270: [BeijingWc2008]雷涛的小猫 Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 836  Solved: 392[Submit][ ...

  7. 1270: [BeijingWc2008]雷涛的小猫

    1270: [BeijingWc2008]雷涛的小猫 Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 905  Solved: 430[Submit][ ...

  8. [BeijingWc2008]雷涛的小猫

    --BZOJ1270 Description 雷涛的小猫雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的). 在他的照顾下,小猫很快恢复了健康 ...

  9. BZOJ 1270 雷涛的小猫 dp

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1270 题目大意: 雷涛的小猫雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助 ...

随机推荐

  1. CSS——盒子

    CSS中的盒子具有以下几个种重要的属性: 1.border(边框) :盒子的厚度 2.padding(内边距):盒子内容距离盒子边框的距离 3.margin(外边距):盒子边框与其他的盒子的距离

  2. 【sqli-labs】 less52 GET -Blind based -Order By Clause -numeric -Stacked injection(GET型基于盲注的整型Order By从句堆叠注入)

    出错被关闭了 http://192.168.136.128/sqli-labs-master/Less-52/?sort=1' http://192.168.136.128/sqli-labs-mas ...

  3. PHP 之递归遍历目录与删除

    /** * @Description: 递归查询目录文件 * @Author: Yang * @param $path * @param int $level * @return array */ f ...

  4. 微信小程序video监测播放进度

    video组件提供的进度相关的监测只有 bindtimeupdate ,官方说明这个函数250ms触发一次,在开发者工具上基本符合,但在真机上每隔1秒触发一次.达不到我们要求的精度.对比下音频,wx. ...

  5. cstringlist

    CStringList类成员 构造 CStringList 构造一个空的CString对象列表   首/尾访问 GetHead 返回此列表(不能是空的)中头部的元素 GetTail 返回此列表(不能是 ...

  6. 安装 jdk 和 IDE软件

    1.jdk的安装 通过官方网站获取JDK http://www.oracle.com 针对不同操作系统,下载不同的JDK版本 识别计算机的操作系统 下载完后进行安装,傻瓜式安装,下一步下一步即可.用j ...

  7. js的基础运用

    总结: 1.定义:分为隐式定义和显式定义可以先定义后赋值. 2.+:当两边都是数值则运行加法运算,若一遍是字符型则进行拼接. 3.数值变字符:数值变量.toString()方法. 字符变数值:通过加一 ...

  8. demo__webpack

    webpack 中使用的包更新非常频繁,使用方式可能很快就会改变,解决方式 看webapck文档 和 包的使用文档 看包的源码 其他... 环境 win10 + webstorm 2019.1.3 + ...

  9. (C/C++学习)10.C++文件流

    说明:C++中的文件流分为三种:文件输入流.文件输出流.文件输入/输出流,其对应的类分别为 ifstream.ofstream 和 fstream .由这三个类创建类对象,完成对文件的操作.其中文件的 ...

  10. 关于单CPU,多CPU上的原子操作

    所谓原子操作,就是"不可中断的一个或一系列操作" . 硬件级的原子操作:在单处理器系统(UniProcessor)中,能够在单条指令中完成的操作都可以认为是" 原子操作& ...