luogu P1586 四方定理(背包)
题意
题解
首先吐槽一下体面的第一句话。反正我不知道(可能是因为我太菜了)
可能没有睡醒,没看出来是个背包。
但告诉是个背包了应该就好做了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int t,n;
int dp[][];
int main(){
dp[][]=;
for(int i=;i*i<=;i++)
for(int j=i*i;j<=;j++)
for(int l=;l<=;l++){
dp[j][l]+=dp[j-i*i][l-];
}
scanf("%d",&t);
while(t--){
scanf("%d",&n);
printf("%d\n",dp[n][]+dp[n][]+dp[n][]+dp[n][]);
}
return ;
}
luogu P1586 四方定理(背包)的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- 四方定理(递归) --java
四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...
- java实现第二届蓝桥杯四方定理
四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...
- [luoguP1586] 四方定理(DP 背包)
传送门 相当于背包, f[i][j] 表示当前数为 i,能分解成 j 个数的平方的和的数量 那么就是统计背包装物品的数量 ——代码 #include <cmath> #include &l ...
随机推荐
- ABBYY简体中文版终身授权半价来袭,真的是5折!
经过了一个春秋,心心念念的双十一终于要来了,一年时间并不长,但这一个月尤其慢!ABBYY官方称为回馈广大用户的支持与厚爱,双十一期间,ABBYY价格感人,诱惑难挡. 说到双十一活动,方式也是五花八门, ...
- linux防火墙查看状态firewall、iptable
一.iptables防火墙1.基本操作 # 查看防火墙状态 service iptables status # 停止防火墙 service iptables stop # 启动防火墙 service ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
- 集合接口list与集合接口set的区别
在Java中 除了 Map以外的集合的根接口都是Collection接口,而在Collection接口的子接口中,最重要的莫过于List和Set集合接口. 今天我们就来谈谈List集合接口与Set集合 ...
- CSS学习(三)
CSS 分组 和 嵌套 选择器 分组选择器 h1,h2,p { color:green; } 嵌套选择器 <!DOCTYPE html> <html> <head> ...
- leetcode笔记:Find Median from Data Stream
一. 题目描写叙述 Median is the middle value in an ordered integer list. If the size of the list is even, th ...
- POJ 3270
黑书上的经典题了.我说说解这个题的巧妙的地方吧. 首先,竟然和置换联系起来了.因为其实一个交换即至少可以使其中一个元素到达指定位置了.和循环置换联合起来,使得一个循环内的数可以一步到达指定位置,很巧妙 ...
- Nodejs之旅開始
web前端是一个门槛低,但精通起来比較难的行业,由于它涉及的范围比較广,也许在十年前.我光靠切图,就能找到一个好的职位,可是如今,仅仅会切图.我们非常难找到自己惬意的工作,如今前端职位要求不仅是htm ...
- 操作系统 之 哈希表 Linux 内核 应用浅析
1.基本概念 散列表(Hash table.也叫哈希表).是依据关键码值(Key value)而直接进行訪问的数据结构. 也就是说,它通过把关键码值映射到表中一个位置来訪问记录.以 ...
- 110个经常使用Oracle函数总结
1. ASCII 返回与指定的字符相应的十进制数; SQL> select ascii(A) A,ascii(a) a,ascii(0) zero,ascii( ) space from dua ...