1、通过本征向量和本征值求主成分

关系:本征值是本征向量的缩放倍数,本征值大的对应的本征向量上的样本的数目就越多;相反本征值越小的,就本征向量上的样本数量就会少。因此可以求出PCA的主成分

主成分分析:主成分大小和本征值的区别在于数据分布所在的“椭圆”的轴的长度是正比于本征值开根号(标准差),不是本征值本身,也就是说本征值越大,分布在该轴上的数据就会越多

2、PCA通过主成分分析降维的思想(用于数据具有很强相关性)

(1)、先对数据进行去均值:求每一列中的平均值,然后再用该平均值将去该列的元素

(2)、每一行去均值之后,然后每个列元素都除于该列的标准差(这一步视情况而定)

(3)、求该矩阵的协方差矩阵

(4)、求协方差矩阵的本征向量和本征值

(5)、取本征值大的对应的本征向量

(6)、将这些本征向量组成一个新的矩阵

(7)、然后利用这个新的矩阵乘于原始的数据矩阵就能实现PCA降维

PCA一些性质的定性理解的更多相关文章

  1. 主成分分析(PCA)的一种直观理解

    源自知乎的一个答案,网上很多关于PCA的文章,不过很多都只讲到了如何理解方差的投影,却很少有讲到为什么特征向量就是投影方向.本文从形象角度谈一谈,因为没有证明,所以不会严谨,但是应该能够帮助形象理解P ...

  2. 【笔记】使用PCA对数据进行降噪(理解)

    使用PCA对数据进行降噪(使用手写数字实例) (在notebook中) 加载库并制作虚拟的数据并进行绘制 import numpy as np import matplotlib.pyplot as ...

  3. PCA vs Linear Regression 可视化理解

    https://shankarmsy.github.io/posts/pca-vs-lr.html https://shapeofdata.wordpress.com/2013/04/09/princ ...

  4. PCA 从线性变换的角度理解

  5. Principal components analysis(PCA):主元分析

    在因子分析(Factor analysis)中,介绍了一种降维概率模型,用EM算法(EM算法原理详解)估计参数.在这里讨论另外一种降维方法:主元分析法(PCA),这种算法更加直接,只需要进行特征向量的 ...

  6. PCA算法的最小平方误差解释

    PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...

  7. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  8. 《深入理解JAVA虚拟机》笔记1

    java程序运行时的内存空间,按照虚拟机规范有下面几项: )程序计数器 指示下条命令执行地址.当然是线程私有,不然线程怎么能并行的起来. 不重要,占内存很小,忽略不计. )方法区 这个名字很让我迷惑. ...

  9. PCA和PCoA

    讲解很详细:http://blog.genesino.com/2016/10/PCA/ PCA分析一般流程: 中心化(centering, 均值中心化,或者中位数中心化),定标(scale,如果数据没 ...

随机推荐

  1. HDU 2303 The Embarrassed Cryptographer

    The Embarrassed Cryptographer 题意 给一个两个素数乘积(1e100)K, 给以个数L(1e6), 判断K的两个素数是不是都大于L 题解 对于这么大的范围,素数肯定是要打表 ...

  2. HDU 1028 Ignatius and the Princess III(母函数整数拆分)

    链接:传送门 题意:一个数n有多少种拆分方法 思路:典型母函数在整数拆分上的应用 /********************************************************** ...

  3. python生成器,递归调用

    生成器 什么是生成器:只要在函数体内出现yield关键字,那么再执行函数就不会执行函数代码,会得到一个结果,该结果就是生成器 生成器就是迭代器 yield的功能 yield为我们提供了一种自定义迭代器 ...

  4. 【BZOJ 1297】[SCOI2009]迷路

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果点与点之间的距离都是1的话. 那么T次方之后的矩阵上a[1][n]就是所求答案了. 但是这一题的边权可能会大于1 但最多为10 ...

  5. java源码之HashSet

    1,HashSet介绍 1)HashSet 是一个没有重复元素的集合.2)它是由HashMap实现的,不保证元素的顺序,而且HashSet允许使用 null 元素.3)HashSet是非同步的.如果多 ...

  6. Nginx监控

    http://www.ttlsa.com/nginx/nginx-status-detail/ http://blog.csdn.net/bobpen/article/details/53431699 ...

  7. [Google Guava] 2.2-新集合类型

    转自:并发编程网 原文链接:http://ifeve.com/google-guava-newcollectiontypes/ 链接博客其他文章中还有更多的guava其他功能的描述,有空可慢慢看. G ...

  8. 10.2.0.4 to 10.2.0.5 Installation of Patch Set Release (Windows)

    环境:10.2.0.4集群数据库zlm10g(双节点,zlm10g1,zlm10g2) 系统:Windows 2003 Server 64Bit 内存:2G RAM 存储:ASM 目标:把集群数据库从 ...

  9. 对Java、C#转学swift的提醒:学习swift首先要突破心理障碍。

    网上非常多都说swift是一门新手友好的语言. 但以我当年从Java转学Ruby的经验,swift对于从Java.C#转来的程序猿实际并不友好.原因就在于原来总有一种错觉:一个语言最重要的就是严谨,而 ...

  10. C++ Primer Plus的若干收获--(九)

    这篇博文我接着上一篇来写,相同讲一些关于类的一些基础知识. 本篇将会继续使用上篇的股票类STock,这里给出接口 ifndef STOCKOO_H_ #define STOCKOO_H_ #inclu ...