OpenCv:椭圆上点的计算方程
椭圆
标准方程:
参数方程:
椭圆上点的参数方程为:
y = a *sin( alp )
x= a *cos( alp ) (a>b>0);
此时的角度alp不是中心点到椭圆上点的角度,而是椭圆的仿射圆上的点到圆心的角度,计算角度应考虑到压缩。
压缩方向:
Height方向拉伸;
计算变化后的beta;
计算坐标:
y = a *sin( beta )
x= a *cos( beta ) (a>b>0);
Height方向压缩;
y = a *sin( beta ) *(b/a)
x= a *cos( beta ) (a>b>0);
计算距离。
椭圆上点的计算方程:
对于 (a>b>0);
对应的圆的方程: R = a;
圆上的点的坐标: x2 = R * sin(Beta) y2 = R * cos(beta);
不变性: alp = beta
对应椭圆点的坐标:
角度: alp = beta
角度: alp = beta
计算椭圆上点的代码:
代码是错误的,不能把点压缩到椭圆上
//调整椭圆边缘到标准椭圆;在角度方向上进行拉伸
//angleOfDip 为椭圆的偏斜角,弧度值!
//增加边界检查
template <class T1,class T2>
float AdjustEllipseEdge(
std::vector<std::pair< T1, T2 > > &closeEdgeIn,
std::vector<std::pair< T1, T2 > > &closeEdgeOut,
const cv::RotatedRect &ecf,
const cv::Point2f &rfCentroidS,
const double angleOfDipSrc,
const int ww,
const int hh)
{
assert(closeEdgeIn.size() == closeEdgeOut.size() );
int w = ww -1;
int h = hh -1; const cv::Point2f rfCentroid = ecf.center;
//cv::Point2f rfCentroid(0,0);
std::vector< double > angleListS;//为点椭圆角度,用于求取 椭圆点到中心的距离
angleListS.resize( closeEdgeIn.size() ); int vOrH = 0;//水平或者竖直?
vOrH = ecf.size.width > ecf.size.height? 0:1;//若0,则为V;或者为1,水平 double angleOfDip = 0;
if (0 == vOrH )
{//若为水平//width 的倾角
angleOfDip = angleOfDipSrc;
}
else
{
angleOfDip = angleOfDipSrc - PI_1_2;
} double a = max(ecf.size.height/2.0,ecf.size.width /2.0);//长轴//固定后使用方程
double b = min(ecf.size.height/2.0,ecf.size.width /2.0); #ifdef SHOW_TEMP
cv::Mat canvasSrc = cv::Mat::zeros(200,200,CV_8UC3);
cv::bitwise_not(canvasSrc,canvasSrc);
cv::ellipse(canvasSrc,ecf,cv::Scalar(0,0,255),1,8);
#endif //在此测试,cos计算的代码
#ifdef SHOW_TEMP cv::RotatedRect ecT = RotatedRect(Point2f(100,100), Size2f(50,100), 30);
std::vector<std::pair< cv::Point2f, double > > PointCosTest(0);
cvWish::polygon::GetElipseEdge(ecT, PointCosTest, (ecT.size.height + ecT.size.height)/5.0 );
cv::ellipse(canvasSrc, ecT, cv::Scalar(0,0,255), 1, 8); for ( int i=0; i< PointCosTest.size(); ++i)
{
cv::circle( canvasSrc, PointCosTest[i].first, 1, cv::Scalar(255,0,0), 1, 8, 0 );
double af = cvWish::cosCv(ecT.center,PointCosTest[i].first);//cosCv出现计算问题
std::cout<< "Cos:" << af<< std::endl;
std::cout<< "Angle:" << PointCosTest[i].second << std::endl;
cv::imshow("PointCosTest",canvasSrc);
cv::waitKey(1);
} #endif for ( int i=0; i<closeEdgeIn.size(); ++i )
{
closeEdgeIn[i].second = cvWish::cosCv( rfCentroid, closeEdgeIn[i].first ); angleListS[i] = closeEdgeIn[i].second;
angleListS[i] -= angleOfDip;//旋转
angleListS[i] = angleListS[i]> PI_4_2 ? angleListS[i] - PI_4_2:angleListS[i]; //探测距离
double disPC = cvWish::disCv(rfCentroid,closeEdgeIn[i].first); double alp = angleListS[i];
//alp = alp *180/M_PI;
double disShould =
sqrt( b*sin(alp ) *b*sin(alp ) + a*cos(alp) *a*cos(alp) );//公式无误,角度出现问题?
//sqrt( b*cos(alp ) *b*cos(alp ) + a*sin(alp) *a*sin(alp) );//公式无误,角度出现问题?
//可能问题,方向角度出现往长轴极点的方向进行压缩,导致生成距离变大。 //double disShould = sqrt(
// ecf.size.width*cos(angleListS[i]) *ecf.size.width*cos(angleListS[i]) /4
// + ecf.size.height*sin(angleListS[i]) *ecf.size.height*sin(angleListS[i])/4 );
std::cout<< alp << std::endl;
std::cout<< cos(alp) << std::endl;
std::cout<<"disPc:" <<disPC << std::endl;
std::cout<< "disShould:" << disShould << std::endl; #ifdef SHOW_TEMP
//cv::Mat canvasSrc(100,100,CV_8UC3);
cv::circle(canvasSrc,closeEdgeIn[i].first,1,cv::Scalar(255,0,0),1,8,0);
cv::imshow("edgeEvolution",canvasSrc);
cv::waitKey(1);
#endif
//调整点到椭圆上
//adjustPoint2Elipse(); //根据距离 往角度方向上拉伸点//角度其实产生了偏离//偏角使用图片偏角
cvWish::PullPoint2Out( closeEdgeIn[i].first, closeEdgeIn[i].second, ( disPC - disShould ) ); closeEdgeOut[i].first = closeEdgeIn[i].first;
////已确认大于0,此时确认不超边界
closeEdgeOut[i].first.x = min(closeEdgeOut[i].first.x,w);
closeEdgeOut[i].first.y = min(closeEdgeOut[i].first.y,h); closeEdgeOut[i].second = closeEdgeIn[i].second;
#ifdef SHOW_TEMP
cv::circle(canvasSrc,closeEdgeOut[i].first,1,cv::Scalar(0,255,0),1,8,0);
cv::imshow("edgeEvolution",canvasSrc);
cv::waitKey(1);
#endif
} return 1.0;
}
代码修改:
使用一个仿射变换
//调整椭圆边缘到标准椭圆;在角度方向上进行拉伸
//angleOfDip 为椭圆的偏斜角,弧度值!
//增加边界检查
template <class T1,class T2>
float AdjustEllipseEdge(
std::vector<std::pair< T1, T2 > > &closeEdgeIn,
std::vector<std::pair< T1, T2 > > &closeEdgeOut,
const cv::RotatedRect &ecf,
const cv::Point2f &rfCentroidS,
const double angleOfDipSrc,
const int ww,
const int hh)
{
assert(closeEdgeIn.size() == closeEdgeOut.size() );
int w = ww -1;
int h = hh -1; const cv::Point2f rfCentroid = ecf.center;
//cv::Point2f rfCentroid(0,0);
std::vector< double > angleListS;//为点椭圆角度,用于求取 椭圆点到中心的距离
angleListS.resize( closeEdgeIn.size() ); int vOrH = 0;//水平或者竖直?
vOrH = ecf.size.width > ecf.size.height? 0:1;//若0,则为V;或者为1,水平 double angleOfDip = 0;
if (0 == vOrH )
{//若为水平//width 的倾角
angleOfDip = angleOfDipSrc;
}
else
{
angleOfDip = angleOfDipSrc - PI_1_2;
} //double a = max(ecf.size.height/2.0,ecf.size.width /2.0);//长轴//固定后使用方程
//double b = min(ecf.size.height/2.0,ecf.size.width /2.0);
double b = ecf.size.height/2.0//长轴//固定后使用方程
double a = ecf.size.width /2.0;
double compressFactor = b /a ;//压缩或者缩放因子 #ifdef SHOW_TEMP
cv::Mat canvasSrc = cv::Mat::zeros(200,200,CV_8UC3);
cv::bitwise_not(canvasSrc,canvasSrc);
cv::ellipse(canvasSrc,ecf,cv::Scalar(0,0,255),1,8);
#endif //在此测试,cos计算的代码
#ifdef SHOW_TEMP cv::RotatedRect ecT = RotatedRect(Point2f(100,100), Size2f(50,100), 30);
std::vector<std::pair< cv::Point2f, double > > PointCosTest(0);
cvWish::polygon::GetElipseEdge(ecT, PointCosTest, (ecT.size.height + ecT.size.height)/5.0 );
cv::ellipse(canvasSrc, ecT, cv::Scalar(0,0,255), 1, 8);
for ( int i=0; i< PointCosTest.size(); ++i)
{
cv::circle( canvasSrc, PointCosTest[i].first, 1, cv::Scalar(255,0,0), 1, 8, 0 );
double af = cvWish::cosCv(ecT.center,PointCosTest[i].first);//cosCv出现计算问题
std::cout<< "Cos:" << af<< std::endl;
std::cout<< "Angle:" << PointCosTest[i].second << std::endl;
cv::imshow("PointCosTest",canvasSrc);
cv::waitKey(1);
} #endif for ( int i=0; i<closeEdgeIn.size(); ++i )
{
closeEdgeIn[i].second = cvWish::cosCv( rfCentroid, closeEdgeIn[i].first ); //压缩方向
angleListS[i] = closeEdgeIn[i].second;
angleListS[i] -= angleOfDip;//旋转
angleListS[i] = angleListS[i]> PI_4_2 ? angleListS[i] - PI_4_2:angleListS[i]; //探测距离
double disPC = cvWish::disCv(rfCentroid,closeEdgeIn[i].first); //double alp = angleListS[i];
//alp = alp *180/M_PI;
//double disShould = sqrt( b*sin(alp ) *b*sin(alp ) + a*cos(alp) *a*cos(alp) );//公式无误,角度出现问题?
//可能问题,方向角度出现往长轴极点的方向进行压缩,导致生成距离变大。 //计算对应仿射圆的角度
double xDeta = closeEdgeIn[i].first.x - rfCentroid.x;
double yDeta = closeEdgeIn[i].first.y - rfCentroid.y;
yDeta /= compressFactor; //计算角度
double beta = cvWish::cosCv( rfCentroid, cv::Point2f( rfCentroid.x + xDeta, rfCentroid.y+ yDeta ) );
double r = a;
xDeta = r* cos(beta);
yDeta = r* sin(beta);
yDeta *= compressFactor; //直接计算距离
double disShould = sqrt( xDeta*xDeta + yDeta*yDeta );//公式无误,角度出现问题? std::cout<<"disPc:" <<disPC << std::endl;
std::cout<< "disShould:" << disShould << std::endl; #ifdef SHOW_TEMP
//cv::Mat canvasSrc(100,100,CV_8UC3);
cv::circle(canvasSrc,closeEdgeIn[i].first,1,cv::Scalar(255,0,0),1,8,0);
cv::imshow("edgeEvolution",canvasSrc);
cv::waitKey(1);
#endif
//调整点到椭圆上
//adjustPoint2Elipse(); //根据距离 往角度方向上拉伸点//角度其实产生了偏离//偏角使用图片偏角
cvWish::PullPoint2Out( closeEdgeIn[i].first, closeEdgeIn[i].second, ( disPC - disShould ) ); closeEdgeOut[i].first = closeEdgeIn[i].first;
////已确认大于0,此时确认不超边界
closeEdgeOut[i].first.x = min(closeEdgeOut[i].first.x,w);
closeEdgeOut[i].first.y = min(closeEdgeOut[i].first.y,h); closeEdgeOut[i].second = closeEdgeIn[i].second;
#ifdef SHOW_TEMP
cv::circle(canvasSrc,closeEdgeOut[i].first,1,cv::Scalar(0,255,0),1,8,0);
cv::imshow("edgeEvolution",canvasSrc);
cv::waitKey(1);
#endif
} return 1.0;
}
从一个椭圆上面获取特定个数的点的函数:
//参数描述:椭圆;输出的点集;欲获取的点的个数
int polygon::GetElipseEdge(
const cv::RotatedRect &ecf,
std::vector<std::pair< cv::Point2f, double > > &ellipseEdge,
const int numPs,
cv::Rect &roiRestrict,
bool openEdgeRestrict )
{
if ( numPs == 0 )
{
return numPs;
}
else
{
ellipseEdge.resize( numPs );
} //对椭圆进行划分
const double angleGap = PI_4_2/numPs;
const double cx = ecf.center.x;
const double cy = ecf.center.y;
const float angleOfDip = PI_1_2 + ecf.angle*3.1415926 /180.0;//为何偏移了 半个pi
//const double angleOfDip =0- ecf.angle*3.1415926 /180.0;// double w = ecf.size.width /2.0;
double h = ecf.size.height/2.0;
for (int i=0 ;i< numPs;++i )
{
double as = i*angleGap ; double a = as ;
a += angleOfDip;
a = a>PI_4_2? a-PI_4_2:a; double y = (w) *sin( a );
double x = (h) *cos( a ); //旋转
float xDeta = x*cos( angleOfDip ) - y*sin( angleOfDip );
float yDeta = x*sin( angleOfDip ) + y*cos( angleOfDip ); cv::Point2f p( cx+xDeta, cy+yDeta);
//ellipseEdge[i] = (std::pair< T1, T2 >)(std::make_pair( p,as ) );
//ellipseEdge[i] = (std::pair< cv::Point2f, double >)(std::make_pair( p,as ) );//此处代码只为运行于GCC修改,有问题,模板库不能使用!!!wishchin!!!
ellipseEdge[i].first.x = p.x;
ellipseEdge[i].first.y = p.y;
ellipseEdge[i].second = as;
} if (openEdgeRestrict)
{
float x,y;
float xS(roiRestrict.x), yS(roiRestrict.y), xE(roiRestrict.x+roiRestrict.width), yE(roiRestrict.y+roiRestrict.height ); for (int i=0 ;i< numPs;++i )
{
x = ellipseEdge[i].first.x;
y = ellipseEdge[i].first.y; x = (std::min)( (std::max)(x,xS),xE );
y = (std::min)( (std::max)(y,yS),yE ); //ellipseEdge[i].first = cv::Point2f(x,y);
ellipseEdge[i].first.x = x;
ellipseEdge[i].first.y = y;
}
}
else
{
} return 1;
}
结果显示:
原始结果: 修改后结果:
OpenCv:椭圆上点的计算方程的更多相关文章
- Math.net,.net上的科学计算利器
F#在科学计算领域的应用,包括部分语法介绍. Math.net,.net上的科学计算利器 摘要: .net上科学计算个人觉得首选numpy和scipy for dotnet.因为这两个库用户数量已经非 ...
- hdu 5017 模拟退火/三分求椭圆上离圆心最近的点的距离
http://acm.hdu.edu.cn/showproblem.php?pid=5017 求椭圆上离圆心最近的点的距离. 模拟退火和三分套三分都能解决 #include <cstdio> ...
- LINUX上一个命令计算PI
Linux上一个命令计算PI – 笑遍世界 http://smilejay.com/2017/11/calculate-pi-with-linux-command/ [root@d1 goEcho]# ...
- 开源一个Mac漂亮的小工具 PPRows for Mac, 在Mac上优雅的计算你写了多少行代码
开源一个Mac漂亮的小工具 PPRows for Mac, 在Mac上优雅的计算你写了多少行代码. 开源地址: https://github.com/jkpang/PPRows
- opencv——pcb上寻找mark点(拟合椭圆的方法)
#include "stdafx.h" // FitCircle.cpp : 定义控制台应用程序的入口 #include "cv.h" #include &qu ...
- 【opencv入门篇】 10个程序快速上手opencv【上】
导言:本系列博客目的在于能够在vs快速上手opencv,理论知识涉及较少,大家有兴趣可以查阅其他博客深入了解相关的理论知识,本博客后续也会对图像方向的理论进一步分析,敬请期待:) PS:官方文档永远是 ...
- Android平台上使用气压传感器计算海拔高度
气压传感器两年前已经开始被手机制造商运用在其设备上,但貌似没有引起开发者足够的重视.像Galaxy S III .Galaxy Note 2和小米2手机上都有,不过大家对于气压传感器比较陌生.其实大气 ...
- OpenCV windows 上安装
1.先按照 Anaconda , 有关教程,可以去其他博客查看 2.傻瓜的装Opencv.(我采用的) 在Anaconda Prompt中输入: conda install -c https:// ...
- OpenCV——轮廓面积及长度计算
计算轮廓面积: double contourArea(InputArray contour, bool oriented=false ) InputArray contour:输入的点,一般是图像的轮 ...
随机推荐
- 70. Climbing Stairs(动态规划)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- jquery源码分析(五)——Deferred 延迟对象
javascript的异步编程 为什么要使用异步编程? JS是单线程语言,就简单性而言,把每一件事情(包括GUI事件和渲染)都放在一个线程里来处理是一个很好的程序模型,因为这样就无需再考虑线程同步这些 ...
- 协程,greenlet原生协程库, gevent库
协程简介 协程(coroutine),又称为微线程,纤程,是一种用户级的轻量级线程.协程拥有自己的寄存器上下文和栈. 协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来时,恢复之前保存的上下文 ...
- 暑假集训D17总结
考试 玄学的一次考试= = T1乱搞 只会乱搞出前二十分 然后真的拿了二十分 T2模拟 自己造数据 没有一个是在十分钟内跳出来的 然后竟然A了 T3暴力 觉得如果老爷机心情不好就会被卡到20 然后 ...
- DSP广告系统架构及关键技术解析(转)
广告和网络游戏是互联网企业主要的盈利模式 广告是广告主通过媒体以尽可能低成本的方式与用户达成接触的商业行为.也就是说按照某种市场意图接触相应人群,影响其中潜在用户,使其选择广告主产品的几率增加,或对广 ...
- Method and apparatus for speculative execution of uncontended lock instructions
A method and apparatus for executing lock instructions speculatively in an out-of-order processor ar ...
- 1393 0和1相等串 51nod
1393 0和1相等串 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 给定一个0-1串,请找到一个尽可能长的子串,其中包含的0与1的个数相等. I ...
- python中 __new__和__init__
python这两个函数和类的实例化有关. __init__是实例化完成之后调用的,会对生成的对象实例做一些修饰 __new__是python新类型才有的,它更像是c/c++里面的构造函数,因为这个函数 ...
- Android 绘制圆形图片
经常在项目中,会遇到使用圆形头像. 然而图片往往不是圆形的,我们须要对图片进行处理.以达到圆形图片的效果.这里.我总结了一下经常使用的android圆形图片的绘制的方法. 主要有以下几种方式:1.画布 ...
- android自定义dialog中点击listview的item事件关闭dialog
import android.app.Activity; import android.app.AlertDialog; import android.app.AlertDialog.Builder; ...