BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818
题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对(x,y)有多少对
思路:先筛出n以内所有的素数顺便筛出欧拉函数,\(gcd(x,y)=k\)等价于\(gcd(\frac{x}{k},\frac{y}{k})=1\)
所以这个问题可以转化为求\(ans=\sum_{i=1}^{tot}\sum_{j=1}^{n/prime[i]}phi[j]\) ,tot为n以内素数个数,
这个公式可以前缀和优化,暴力枚举也能过,而且时间居然只慢了20ms....
求得的结果只是一半的情况,当\(x\not=y,(x,y)\not=(y,x)\),而x=y的情况只有tot种,(2,2),(3,3),(5,5)....(prime[tot],prime[tot]),
所以答案为\(ans*2-tot\)
```c++
#include<bits/stdc++.h>
#define fi first
#define se second
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
const double eps=1e-6;
const ll inf=1e18;
const int mod=1e9+7;
const int maxn=1e7+10;
bool b[maxn];
int prime[maxn],tot,n;
ll phi[maxn];
void init(int n){
b[0]=b[1]=phi[1]=1;
for(int i=2;i<=n;i++){
if(!b[i]){
prime[++tot]=i;
phi[i]=i-1;
}
for(int j=1;j<=tot;j++){
if(i*prime[j]>n) break;
b[i*prime[j]]=1;
phi[i*prime[j]]=phi[i]*phi[prime[j]];
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(int i=1;i<=n;i++) phi[i]+=phi[i-1];
}
int main(){
ios::sync_with_stdio(false);
cin>>n;
init(n);
ll ans=0,cnt=0;
for(int i=1;i<=tot;i++){
ans+=phi[n/prime[i]];
}
cout<<ans*2-tot<<endl;
return 0;
}
```
BZOJ 2818 GCD 素数筛+欧拉函数+前缀和的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- 【SPOJ-GCDEX】GCD Extreme(欧拉函数)
题目: SPOJ-GCDEX (洛谷 Remote Judge) 分析: 求: \[\sum_{i=1}^{n}\sum_{j=i+1}^{n}gcd(i,j)\] 这道题给同届新生讲过,由于种种原因 ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
- 素数的线性筛 && 欧拉函数
O(n) 筛选素数 #include<bits/stdc++.h> using namespace std; const int M = 1e6 + 10 ; int mindiv[M] ...
- [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...
- 转载:Candy? 在线性时间内求出素数与欧拉函数
转载自:http://www.cnblogs.com/candy99/p/6200660.html 2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB ...
随机推荐
- [UI] 精美UI界面欣赏[3]
精美UI界面欣赏[3]
- 安装Stunnel来实现正向代理邮件
文:铁乐与猫 2017年8月 一开始我是使用yum install来安装stunnel的 感觉版本低点也无所谓,毕竟只是拿来加密代理一下邮件收发. 可是后来发现之前下载的最新官网版本的tar包里有很多 ...
- Hadoop HBase概念学习系列之RowKey设计(二十九)
HBase里的RowKey设计,分为随机查询的RowKey设计和连续查询的RowKey设计.
- 对象.isdigit() ,只能判断全是数字的字符串
s = "55p"" print(s.isdigit()) # False s2 = "5568" print(s2.isdigit()) # Tru ...
- 【4】python函数基础
---恢复内容开始--- 案例1:时间下一秒程序 #__author:"吉勇佳" #date: 2018/10/14 0014 #function: timestr=input(& ...
- 本地项目关联git仓库
Command line instructions Git global setup git config --global user.name "zhoushuo" git co ...
- 如何动态调用 C 函数
JSPatch 支持了动态调用 C 函数,无需在编译前桥接每个要调用的 C 函数,只需要在 JS 里调用前声明下这个函数,就可以直接调用: require('JPEngine').addExtensi ...
- Odoo中的甘特图
转载请注明原文地址:https://www.cnblogs.com/cnodoo/p/9296922.html 甘特图 用图表来衡量实际与预期生产记录之间关系的方法中所使用的图表,亦称甘特进度表或条 ...
- ceph 分布式存储安装
[root@localhost ~]# rm -rf /etc/yum.repos.d/*.repo 下载阿里云的base源 [root@localhost ~]# wget -O /etc/yum. ...
- c++中内存拷贝函数(C++ memcpy)详解
原型:void*memcpy(void*dest, const void*src,unsigned int count); 功能:由src所指内存区域复制count个字节到dest所指内存区域. 说明 ...