第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解。请过路大神不吝赐教。

状态:每一列的每个数[ i ][ j ]都是一个状态;

然后定义状态[ i ][ j ]的指标函数d[ i ][ j ]为从[ i ][ j ]向右出发的能够得到的最小的整数和;

状态转移方程:d[ i ][ j ]=min(d[ i+1 ][ j+1 ][ i-1 ][ j+1 ][ i ][ j+1 ])+a[ i ][ j ];

当中a[ i ][ j ]为当前位置的数值;

然后有了这些就能够用自己熟悉的方式对问题求解了。

我所知道的合理求解过程有两种:记忆化搜索和递推。

我所知道的输出方法有两种:在求解过程中记录最优位置并在最后输出。全然在输出过程中寻求最佳位置并输出;

下面是自己写的两种输出不同的方法,其处理求解过程均为递推,我觉得对本题来讲记忆化搜索比較复杂,而递推又显而易见

1.

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
int m,n;
int a[50][1100];
int rd[50][1100];
ll d[50][1100]; ll min_ans(ll t1,ll t2 ,ll t3)
{
long long temp=min(t1,t2);
temp=min(temp,t3);
return temp;
}
int min_pos(ll ans,int y,int x1,int x2,int x3)
{
int pos=m+1;
if(ans==d[x1][y])
{
pos=min(pos,x1);
}
if(ans==d[x2][y])
{
pos=min(pos,x2);
}
if(ans==d[x3][y])
{
pos=min(pos,x3);
}
return pos;
}
void dp()
{
for(int i=n;i>=1;i--)
{
for(int j=1;j<=m;j++)
{
int temp1=j-1;
if(temp1==0) temp1=m;
int temp2=j+1;
if(temp2>m) temp2=1;
ll t1,t2,t3,ans;int pos;
t1=d[temp1][i+1];t2=d[j][i+1];t3=d[temp2][i+1];
d[j][i]=min_ans(t1,t2,t3)+a[j][i];
rd[j][i]=min_pos(d[j][i]-a[j][i],i+1,temp1,j,temp2);
}
}
}
void print_ans(int pp)
{
int cur=1;
printf("%d",pp);
while(cur!=n)
{
printf(" %d",rd[pp][cur]);
pp=rd[pp][cur];
cur++;
}
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(d,0,sizeof(d));
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
dp();
long long min_ = -1;
for(int i=1;i<=m;i++)
{
if(min_==-1) min_=d[i][1];
else
min_=min(min_,d[i][1]);
}
int pp;
for(int i=1;i<=m;i++)
{
if(d[i][1]==min_)
{
pp=i;
break;
}
}
print_ans(pp);
printf("\n");
printf("%lld",d[pp][1]);
printf("\n");
}
return 0;
}

2.

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
int m,n;
int a[50][1100];
int rd[50][1100];
ll d[50][1100]; ll min_ans(ll t1,ll t2 ,ll t3)
{
long long temp=t1>t2? t2:t1;
return temp>t3?t3:temp;
} void dp()
{
for(int i=n; i>=1; i--)
{
for(int j=1; j<=m; j++)
{
int temp1=j-1;
if(temp1==0) temp1=m;
int temp2=j+1;
if(temp2>m) temp2=1;
ll t1,t2,t3,ans;
int pos;
t1=d[temp1][i+1];
t2=d[j][i+1];
t3=d[temp2][i+1];
d[j][i]=min_ans(t1,t2,t3)+a[j][i];
}
}
}
void print_ans(int pp,int cur)
{
printf("%d",pp);
cur++;
while(1&&cur<=n)
{
int i;
for(i=1; i<=m; i++)
{
if((d[i][cur]==d[pp][cur-1]-a[pp][cur-1]))
{
if(pp==1&&(i==m||i==pp||i==pp+1))
{
printf(" %d",i);
break;
}
else if(pp==m&&(i==1||i==pp||i==pp-1))
{
printf(" %d",i);
break;
}
else if(i>=pp-1&&i<=pp+1)
{
{
printf(" %d",i);
break;
}
}
else
continue;
}
}
pp=i;
cur++;
if(cur>n)
break;
}
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(d,0,sizeof(d));
for(int i=1; i<=m; i++)
{
for(int j=1; j<=n; j++)
{
scanf("%d",&a[i][j]);
}
}
dp();
long long min_ = -1;
for(int i=1; i<=m; i++)
{
if(min_==-1) min_=d[i][1];
else
min_=min(min_,d[i][1]);
}
int pp;
for(int i=1; i<=m; i++)
{
if(d[i][1]==min_)
{
pp=i;
break;
}
}
print_ans(pp,1);
printf("\n");
printf("%I64d",d[pp][1]);
printf("\n");
}
return 0;
}

第一次做动规题目,花了好久才做好,由于期间出了一些小错误(如今看来依然是一些细节上的错误。与动规无关),并且由于对动规的不熟悉。心里对其也有一点点的恐惧。

可是认定这一道动规并不难,有时自己独立杰出的第一道动规题目。十分想要独立将其AC。然后一直找细节測数据。最终是找到了几处非常不应该犯的细节处理上的错误。这一点让我非常伤心。但最终的AC胜过千言万语。

之后选择还有一种方法,也是磕磕绊绊才写出AC代码orz...

这就算是开了动规吧,多思考多钻研,多学习别人的优秀思路

uva 116 - Unidirectional TSP (动态规划)的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

  6. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  7. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  8. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  9. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

随机推荐

  1. 你需要知道的、有用的 Python 功能和特点

    在使用Python多年以后,我偶然发现了一些我们过去不知道的功能和特性.一些可以说是非常有用,但却没有充分利用.考虑到这一点,我编辑了一些的你应该了解的Pyghon功能特色. 带任意数量参数的函数 你 ...

  2. 【Django】Django如何保证并发操作数据一致性问题

    代码示例: 使用 select for update 数据库查询 select ... for update 是数据库层面上专门用来解决并发取数据后再修改的场景的,主流的关系数据库 比如mysql.p ...

  3. [Debug] Debug Node.js Application by using Chrome Dev tools

    For example you have a server.js file, and you want to debug some problems; What you can do is: node ...

  4. 为什么好多人说win8不好用?

    2012年8月就開始接触win8了,那时win8已经出来半年了:自从用了win8之后就感觉他比xp.win7桌面更绚丽.我就喜欢绚丽的桌面.至今使用win8已经两年了,可发现身边好多人都说win8不好 ...

  5. 【statistics】查看2018.4.25日理想论坛某ID在一天中的活跃情况

    用于统计的sum.py代码: import re import pymysql # 入口函数 def main(): dic={'00':0,'01':0,'02':0,'03':0,'04':0,' ...

  6. Office PPT中如何插入flash

    1 在"视图"选项中找到工具栏,控件工具箱,最后一个其他工具中的shockwave flash object 2 当鼠标变成十字架之后随便画一个矩形,然后会出现一个白色的矩形中间十 ...

  7. T-SQL 之 自定义函数

    和存储过程很相似,用户自定义函数也是一组有序的T-SQL语句,UDF被预先优化和编译并且作为一个单元进行调用.UDF和存储过程的主要区别在于返回结果的方式. 使用UDF时可传入参数,但不可传出参数.输 ...

  8. Struts2(一)

    一.Struts下载地址 http://struts.apache.org/download.cgi 二.导入包.配置Web.xml和struts.xml 在下载的包中从示例中找到一些包就可以 str ...

  9. Java从零开始学十七(简单工厂)

    简单工厂的实现 实现一个计算器:要求输入2个数,和运算符,得到结果 Operation类 package com.pb.demo1; public class Operation { private ...

  10. Java从零开始学四(数据类型)

    一.Java数据类型划分 二.基本数据类型 No. 数据类型 大小/位 可表示的数据范围 1 long(长整数) 64 -9223372036854775808 ~ 92233720368547758 ...