隐型马尔科夫模型(HMM) 简介
先介绍一下马尔科夫模型:
马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。
特征:有限视野、时间不变性
隐性马尔可夫模型:
HMM(Hidden Markov Model), 也称隐性马尔可夫模型,是一个概率模型,用来描述一个系统隐性状态的转移和隐性状态的表现概率。
特征:1)问题是基于序列的,比如时间序列,或者状态序列。2)问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列。
HMM的定义:
对于HMM模型,首先我们假设Q是所有可能的隐藏状态的集合,V是所有可能的观测状态的集合,即:
其中,N是可能的隐藏状态数,M是所有的可能的观察状态数。
对于一个长度为T的序列,I对应的状态序列, O是对应的观察序列,即:
其中,任意一个隐藏状态it∈Q,任意一个观察状态ot∈V
HMM做出了 两个很重要的假设:
1) 齐次马尔科夫链假设。即任意时刻的隐藏状态只依赖于它前一个隐藏状态。
2) 观测独立性假设。即任意时刻的观察状态只仅仅依赖于当前时刻的隐藏状态。
HMM模型一共有三个经典的问题需要解决:
1) 评估观察序列概率。即给定模型λ=(A,B,Π)和观测序列O={o1,o2,...oT},计算在模型λλ下观测序列OO出现的概率P(O|λ)P(O|λ)。这个问题的求解需要用到前向后向算法。这个问题是HMM模型三个问题中最简单的。
2)模型参数学习问题。即给定观测序列O={o1,o2,...oT},估计模型λ=(A,B,Π)的参数,使该模型下观测序列的条件概率P(O|λ)P(O|λ)最大。这个问题的求解需要用到基于EM算法的鲍姆-韦尔奇算法。这个问题是HMM模型三个问题中最复杂的。
3)预测问题,也称为解码问题。即给定模型λ=(A,B,Π)和观测序列O={o1,o2,...oT},求给定观测序列条件下,最可能出现的对应的状态序列,这个问题的求解需要用到基于动态规划的维特比算法。这个问题是HMM模型三个问题中复杂度居中的算法。
使用条件:
1.隐性状态的转移必须满足马尔可夫性。(状态转移的马尔可夫性:一个状态只与前一个状态有关)
2. 隐性状态必须能够大概被估计。
在满足条件的情况下,确定问题中的隐性状态是什么,隐性状态的表现可能又有哪些.
HMM适用于的问题在于,真正的状态(隐态)难以被估计,而状态与状态之间又存在联系。
参考博客:http://www.cnblogs.com/pinard/p/6945257.html
隐型马尔科夫模型(HMM) 简介的更多相关文章
- 隐型马尔科夫模型(HMM)向前算法实例讲解(暴力求解+代码实现)---盒子模型
先来解释一下HMM的向前算法: 前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率.我们先来看看前向算法是如何求解这个问题的. 前向算法本质上属于动态规划的算法,也就是 ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- 猪猪的机器学习笔记(十七)隐马尔科夫模型HMM
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来 ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型HMM(一)HMM模型
隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比 ...
- 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态 ...
- 用hmmlearn学习隐马尔科夫模型HMM
在之前的HMM系列中,我们对隐马尔科夫模型HMM的原理以及三个问题的求解方法做了总结.本文我们就从实践的角度用Python的hmmlearn库来学习HMM的使用.关于hmmlearn的更多资料在官方文 ...
- 机器学习之隐马尔科夫模型HMM(六)
摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步 ...
随机推荐
- springboot问题,没有主清单属性
在pom.xml中添加 <build> <plugins> <plugin> <groupId>org.apache.maven.plugins< ...
- Type mismatch in value from map: expected org.apache.hadoop.io.longWritable
hadoop 编译的程序的报错 执行了命令: hadoop fs -put HTTP_20130313143750.dat /date.dochadoop jar MyDataCount.jar co ...
- OpenGL ES 光照模型之——环境光照(RenderMonkey测试)
概述及目录(版权所有,请勿转载 www.cnblogs.com/feng-sc/) 本文总结如何在RenderMonkey下做简单的OpenGL ES环境光光照模型测试. 主要包括如下内容: 1.使用 ...
- C#DataGridView的简单使用
首先创建一个DataGridView控件,然后创建列(包括列名的定义), 由于我不是和数据库进行连接,只是为了输出好看一点. 删除所有数据: while (this.dataGridView1.Row ...
- MVC下使用Areas
(一) 为什么要分离 MVC项目各部分职责比较清晰,相比较ASP.NET Webform而言,MVC项目的业务逻辑和页面展现较好地分离开来,这样的做法有许多优点,比如可测试,易扩展等等.但是在实际的开 ...
- PhoneGap原理
http://www.oschina.net/question/213217_46380
- Java基础学习篇---------封装
一.类和对象分配内存 二.Java中的内部类 : 可以直接去访问外部类的所有属性(包括私有成员) 1.Java中成员内部类 (1).内部类的方法可以直接访问外部类的类中的所有成员变量 (2).外部类 ...
- Python拾遗
for...else...语句 用 break 关键字终止当前循环就不会执行当前的 else 语句,而使用 continue 关键字快速进入下一论循环,或者没有使用其他关键字,循环的正常结束后,就会触 ...
- 前端入门CSS(3)
day60 不透明度 opacity()\ opacity (不透明度) 1. 取值0~1 2. 和rgba()的区别: ...
- 三,PHP缓存机制实现页面静态化
页面静态化思路: 因为新闻这种信息对实时性要求不高,并且比较稳定,所以可以这样做:当地一个用户访问某条新闻后,我们使用ob缓存机制,将内容缓存到html页面.当下一次访问时候,直接访问html页面.这 ...