[codeup] 2046 八皇后
题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入
3
6
4
25
样例输出
25713864
17582463
36824175
思路
八皇后问题的答案有92个,首先按照字典序生成这92个答案,然后根据下标查询即可。生成八皇后直接按行的顺序生成八个全排列,这八个全排列即为八行中每行皇后的位置,也就是列号,然后检查满足限制条件即可。
简单的暴力生成版本:
int count = 0;
int n, p[maxn];
bool hash_table[maxn] = {false};
void generate_p(int index)
{
if (index == n + 1) { // 判断全排列满足条件
bool flag = true;
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
if (abs(i - j) == abs(p[i] - p[j]))
flag = false;
}
}
if (flag)
count++;
return;
}
for (int x = 1; x <= n; x++) {
if (hash_table[x] == false) {
p[index] = x;
hash_table[x] = true;
generate_p(index + 1);
hash_table[x] = false;
}
}
}
由于某些全排列序列在前几个数出来时就可以判断是错误答案了,所以可以稍微优化以下代码,加上剪枝回溯的版本:
int count = 0;
int n, p[maxn];
bool hash_table[maxn] = {false};
void generate_p(int index)
{
if (index == n + 1) {
count++;
return;
}
for (int x = 1; x <= n; x++) {
if (hash_table[x] == false) {
bool flag = true; // 剪枝
for (int pre = 1; pre < index; pre++) {
if (abs(index - pre) == abs(x - p[pre])) {
flag = false;
break;
}
}
if (flag == true) {
p[index] = x;
hash_table[x] = true;
generate_p(index + 1);
hash_table[x] = false;
}
}
}
}
代码
#include <cstdio>
#include <algorithm>
const int maxn = 11;
int n, p[maxn];
bool hash_table[maxn] = {false};
int count = 0;
int solve[100] = {0};
void generate_p(int index)
{
if (index == n + 1) {
count++;
int tmp = 0;
for (int i = 1; i <= n; i++) {
tmp = tmp * 10 + p[i];
}
solve[count] = tmp;
return;
}
for (int x = 1; x <= n; x++) {
if (hash_table[x] == false) {
bool flag = true;
for (int pre = 1; pre < index; pre++) {
if (abs(index - pre) == abs(x - p[pre])) {
flag = false;
break;
}
}
if (flag == true) {
p[index] = x;
hash_table[x] = true;
generate_p(index + 1);
hash_table[x] = false;
}
}
}
}
int main()
{
int m, t;
n = 8;
generate_p(1);
scanf("%d", &m);
while (m--) {
scanf("%d", &t);
printf("%d\n", solve[t]);
}
return 0;
}
[codeup] 2046 八皇后的更多相关文章
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- 数据结构0103汉诺塔&八皇后
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...
- Python学习二(生成器和八皇后算法)
看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...
- Python解决八皇后问题
最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...
- OpenJudge1700:八皇后问题 //不属于基本法的基本玩意
1700:八皇后问题//搜索 总时间限制: 10000ms 内存限制: 65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方. 输入 无输入. 输出 按给定顺序和 ...
- C#八皇后问题 枚举值
记得刚出道的时候, 有考虑怎么面试, 以及可能会遇到的面试题, 有一个人说了一下 八皇后问题, 据说要用 sql 语句写出来, 暂时我 写了一个C#版本的, 经测验,八皇后算法结果为 92种, 这个与 ...
- 八皇后(dfs+回溯)
重看了一下刘汝佳的白板书,上次写八皇后时并不是很懂,再写一次: 方法1:逐行放置皇后,然后递归: 代码: #include <bits/stdc++.h> #define MAXN 8 # ...
- C语言解决八皇后问题
#include <stdio.h> #include <stdlib.h> /* this code is used to cope with the problem of ...
- 八皇后,回溯与递归(Python实现)
八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...
随机推荐
- DevOps Workshop 研发运维一体化(北京第二场) 2016.04.27
北京不亏为首都,人才济济,对微软DevOps解决方案感兴趣的人太多.我们与微软公司临时决定再家一场培训. 我之前在博客中(DevOps Workshop 研发运维一体化第一场(微软亚太研发集团总部)h ...
- 设计模式之组合模式(Composite Pattern)
一.什么是组合模式? 组合模式提供了一种层级结构,并允许我们忽略对象与对象集合之间的差别 调用者并不知道手里的东西是一个对象还是一组对象,不过没关系,在组合模式中,调用者本来就不需要知道这些 二.举个 ...
- C# npoi 从excel导入datagridviews 批量联网核查
DataSet ds = new DataSet(); OpenFileDialog openFileDialog = new OpenFileDialog(); openFileDialog.Fil ...
- WPF 重写微调自带的样式,ListView、DataGrid、TreeView等所有控件的默认样式
不知道各位在开发中有没有遇到这样的窘迫,开发一个UI,设计给出的效果图和自带的样式的区别很大,然后有的样式通过属性是修改不了的,比如TreeView的子项TreeViewItem,想完全透明背景色就做 ...
- vs installer 将.net framework 集成到安装包中
Missing .NET Framework 4.0 in Visual Studio 2017 Prerequisites whenhttps://stackoverflow.com/questio ...
- C#默认以管理员身份运行程序实现代码
using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; names ...
- c# 字符串去掉两端空格,并且将字符串中多个空格替换成一个空格
字符串去掉两端空格,并且将字符串中多个空格替换成一个空格: 主要还是考察使用字符串的方法: trim(); 去掉字符串两端空格 split(); 切割 string.join(); 连接 class ...
- SqlAlchemy操作(二)
SQLALchemy初始化链接数据库 1. 数据库配置. https://www.cnblogs.com/mengbin0546/p/10124560.html 2. python端操作. 一. ...
- ElasticSearch学习总结(二):ES介绍与架构说明
本文主要从概念以及架构层面对Elasticsearch做一个简单的介绍,在介绍ES之前,会先对ES的"发动机"Lucene做一个简单的介绍 1. Lucene介绍 为了更深入地理解 ...
- 弦论(tjoi2015,bzoj3998)(sam(后缀自动机))
对于一个给定长度为\(N\)的字符串,求它的第\(K\)小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串\(S\) 第二行为两个整数\(T\)和\(K\),\(T\)为0则表示不同 ...