python实现简单线性回归
之前推导了一元线性回归和多元线性回归,今天就用python来实现一下一元线性回归
先看下之前推导的结果
,
第一种是用循环迭代的计算方法。这里的x,y是numpy中的array类型
def sum(x):
sum1 = 0
for i in x:
sum1 += i
return sum1
def sub(x,y):
ret = []
for i in range(len(x)):
ret.append(x[i] - y)
return np.array(ret)
def mean(num):
sum = 0
for i in num:
sum += i
return sum / len(num)
def multiply(x,y):
ret = []
for i in range(len(x)):
ret.append(x[i]*y[i])
return np.array(ret)
def square(x):
ret = []
for i in range(len(x)):
ret.append (x[i] * x[i])
return np.array(ret)
def linearRegression(x,y):
length = len(x)
t1 = time()
x_mean1 = mean(x)
a = sum(multiply(y,sub(x,x_mean1))) / (sum(square(x)) - sum(x) ** 2 / length)
sum1 = 0
for i in range(length):
sum1 += (y[i] - a * x[i])
b = sum1 / length
第二种人是用vectorization的方法
def linearRegression_(x,y):
length = len(x)
x_mean = x.mean()
a = (y * (x - x_mean)).sum() / ((x ** 2).sum() - x.sum() ** 2 / length)
b = (y - a * x).sum() / length
为了比较二者的性能,这里我们随机生成10000条数据,分别统计两种方法运行的时间
x=np.random.randint(0,100,10000)
y=np.random.randint(0,100,10000) t1 = time()
linearRegression(x,y)
t2 = time()
print(t2 - t1) t1 = time()
linearRegression_(x,y)
t2 = time()
得到二者的结果
0.1349632740020752
0.0009996891021728516
上面的是循环计算所需的时间,下面的是vectorization所需得时间。很明显vectorization要优于循环计算
python实现简单线性回归的更多相关文章
- day-12 python实现简单线性回归和多元线性回归算法
1.问题引入 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...
- Python回归分析五部曲(一)—简单线性回归
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析( ...
- 简单线性回归(梯度下降法) python实现
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- 简单线性回归(最小二乘法)python实现
简单线性回归(最小二乘法)¶ 0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt 1.导入数据¶ In [ ...
- python实现多变量线性回归(Linear Regression with Multiple Variables)
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...
- 机器学习(2):简单线性回归 | 一元回归 | 损失计算 | MSE
前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回 ...
- 机器学习——Day 2 简单线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...
- 教你用Python实现简单监督学习算法
教你用Python实现简单监督学习算法 监督学习作为运用最广泛的机器学习方法,一直以来都是从数据挖掘信息的重要手段.即便是在无监督学习兴起的近日,监督学习也依旧是入门机器学习的钥匙. 这篇监督学习教程 ...
- Python爬虫简单实现CSDN博客文章标题列表
Python爬虫简单实现CSDN博客文章标题列表 操作步骤: 分析接口,怎么获取数据? 模拟接口,尝试提取数据 封装接口函数,实现函数调用. 1.分析接口 打开Chrome浏览器,开启开发者工具(F1 ...
随机推荐
- 我的linux shell 脚本头部
#!/bin/bash #################################################### # version:1.01 # # link:http://www. ...
- jdbc 和oracle数据库 建立连接
package jdbc; import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException; ...
- P1446 [HNOI2008]Cards
题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案. 进一步,小春要求染出Sr张红色,Sb张蓝 ...
- K2使用Nginx做负载均衡
K2使用Nginx做负载均衡 K2目前是支持Load Balancing这种方式,来做负载均衡,也可以使用F5来做负载均衡,但这次我使用nginx来实现K2的负载均衡 下载nginx 请下载nginx ...
- 考虑写一个不抛出异常的swap函数
我们可以调用std下的swap函数,这是一个模板函数:既可以: ; ; std::swap(a,b); cout<<"a = "<<a<<&qu ...
- 关于NSStringFromClass的一点见解
今天做项目的时候遇到一个需求,就是子view视图弹出时,屏蔽掉父view的所有手势,然后想到用 UIGestureRecognizerDelegate代理方法,中间省一些文字(无奈脸),言归正传,NS ...
- linux查看日志文件内容命令(面试被常问到的问题)
tail -f test.log 你会看到屏幕不断有内容被打印出来. 这时候中断第一个进程Ctrl-C, linux 如何显示一个文件的某几行(中间几行) 从第3000行开始,显示1000行.即显示3 ...
- 文字属性和div容器盒的使用基础
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- C语言学习记录_2019.02.06
break语句的作用:当执行到break,则跳出循环,免去不必要的循环次数,节省时间和资源.-----跳出循环,结束循环: continue:跳过这一次循环剩下的语句,进入到下一轮循环.-----跳到 ...
- Scala(三):类
类:Class 1.简单类和无参方法 2.带getter和setter属性 3.只带getter属性 4.对象私有字段 5.Bean属性 6.辅助构造器 7.主构造器 8.嵌套类 1.简单类和无参方法 ...