将两个人各自所在点视为状态,新建一个图。到达某个终点的概率等于其期望次数。那么高斯消元即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 410
int n,m,s,t,d[][],degree[];
double a[N][N],p[];
int trans(int x,int y){return (x-)*n+y;}
void gauss()
{
for (int i=;i<n*n;i++)
{
int mx=i;
for (int j=i+;j<=n*n;j++)
if (fabs(a[j][i])>fabs(a[mx][i])) mx=j;
if (mx!=i) swap(a[i],a[mx]);
for (int j=i+;j<=n*n;j++)
{
double t=a[j][i]/a[i][i];
for (int k=i;k<=n*n+;k++)
a[j][k]-=t*a[i][k];
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3270.in","r",stdin);
freopen("bzoj3270.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),s=read(),t=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
degree[x]++,degree[y]++;
d[x][y]=d[y][x]=;
}
for (int i=;i<=n;i++) d[i][i]=;
for (int i=;i<=n;i++) cin>>p[i];
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
for (int x=;x<=n;x++)
for (int y=;y<=n;y++)
if (x!=y&&d[x][i]&&d[y][j])
{
if (x==i) a[trans(i,j)][trans(x,y)]=p[x];
else if (d[x][i]) a[trans(i,j)][trans(x,y)]=(-p[x])/degree[x];
if (y==j) a[trans(i,j)][trans(x,y)]*=p[y];
else if (d[y][j]) a[trans(i,j)][trans(x,y)]*=(-p[y])/degree[y];
}
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
a[trans(i,j)][trans(i,j)]--;
a[trans(s,t)][n*n+]=-;
gauss();
for (int i=n*n;i>=;i--)
{
a[i][n*n+]/=a[i][i];
for (int j=i-;j;j--)
a[j][n*n+]-=a[i][n*n+]*a[j][i];
}
for (int i=;i<=n;i++) printf("%.6lf ",a[trans(i,i)][n*n+]);
return ;
}

BZOJ3270 博物馆(高斯消元+概率期望)的更多相关文章

  1. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  2. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. BZOJ3270:博物馆(高斯消元)

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

  5. [JLOI2012]时间流逝 树上高斯消元 概率期望

    题面 题意:(感觉题面写的题意是错的?)有\(n\)种能量不同的圈,设当前拥有的圈的集合为\(S\),则: 1,每天有\(p\)概率失去一个能量最小的圈.特别的,如果\(S = \varnothing ...

  6. 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)

    题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...

  7. 高斯消元与期望DP

    高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...

  8. HDU4870_Rating_双号从零单排_高斯消元求期望

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...

  9. hdu 4870 rating(高斯消元求期望)

    Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

随机推荐

  1. 关于IPointerEnterHandler和IpointerExitHandler的简单说明

    自己在学习UGUI背包系统时用到了,而且遇到一些问题,所以在这里写一下这两个接口的简单说明. 继承IPointerEnterHandler和IpointerExitHandler这两个接口后可以实现两 ...

  2. Unity摄像机围绕物体旋转两种实现方式

    第一种,使用Transform 函数 RotateAround. 代码如下: public Transform target;//获取旋转目标 private void camerarotate() ...

  3. 005 -- Mysql数据库引擎特点分析

    常用的数据库引擎的特点: ISAM: ISAM是一个定义明确且历经时间考验的数据表格管理方法,它在设计之时就考虑到数据库查询次数要远大于更新次数.因此,ISAM执行读取操作的速度很快,而且不占用大量的 ...

  4. PHP核心技术——异常和错误处理

    PHP只有手动抛出异常后才能捕获异常 $a = null; try { $a = 5/0; echo $a,PHP_EOL; } catch (exception $e) { $e -> get ...

  5. VisionPro相机操作类

    在网站上看到这个,保存下来,以后用到了,再看一下.谢谢原创的分享! #region 获得相机信息方法 /// <summary> /// 公有静态方法,查找单个相机.例如“Basler” ...

  6. html , body , margin , overflow 之大乱战

    <!DOCTYPE html> <html> <head> <style> html,body{ margin:0 ;padding:0 } div{m ...

  7. java浮点数存储

    转自: [解惑]剖析float型的内存存储和精度丢失问题 1.小数的二进制表示问题 首先我们要搞清楚下面两个问题: (1)  十进制整数如何转化为二进制数 算法很简单.举个例子,11表示成二进制数: ...

  8. 转载---VisualStudioCode通过SSH远程编辑文件

    最近需要长期修改远端服务器上的代码,调试.vim操作又不是很6,想到了远程操作的办法,找到一篇好用的bolg,记录一下. 原文链接:https://blog.csdn.net/qq_38401919/ ...

  9. iOS静态库.a总结(2017.1.24增加脚本打包方法)

    修改于:2017.1.24 1.什么是库? 库是程序代码的集合,是共享程序代码的一种方式 2.根据源代码的公开情况,库可以分为2种类型 a.开源库 公开源代码,能看到具体实现 ,比如SDWebImag ...

  10. css 文字展示两行 其余的省略号显示

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...