传送门

一道经典的斜率优化dp。

推式子ing。。。

令f[i]表示装前i个玩具的最优代价。

然后用老套路。

我们只考虑把第j+1" role="presentation" style="position: relative;">j+1j+1~i" role="presentation" style="position: relative;">ii个玩具分成一组的情况,之前的1~j个自行按最优情况分组。

显然有f[i]=f[j]+(sum[i]−sum[j]+L)2" role="presentation" style="position: relative;">f[i]=f[j]+(sum[i]−sum[j]+L)2f[i]=f[j]+(sum[i]−sum[j]+L)2

那么对于决策j,k。

谁对i的贡献更优呢?

我们假设j更优。

显然有

f[i]=f[j]+(sum[i]−sum[j]+L)2&lt;f[i]=f[k]+(sum[i]−sum[k]+L)2" role="presentation" style="position: relative;">f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2

=>f[j]+sum[j]2−2sum[i]∗sum[j]&lt;f[k]+sum[k]2−2sum[i]∗sum[k]" role="presentation" style="position: relative;">f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]

设T[t]=f[t]+sum[t]2" role="presentation" style="position: relative;">T[t]=f[t]+sum[t]2T[t]=f[t]+sum[t]2

=>(T[j]−T[k])/(sum[j]−sum[k])&lt;2sum[i]" role="presentation" style="position: relative;">(T[j]−T[k])/(sum[j]−sum[k])<2sum[i](T[j]−T[k])/(sum[j]−sum[k])<2sum[i]

这不就是斜率优化么?

用队列维护一下就行了。

继续分析会发现应该维护单调递增的斜率,也就是维护一个下凸壳。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 50005
using namespace std;
inline ll read(){
    ll ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
int n,hd,tl,q[N];
ll L,sum[N],f[N];
inline ll gety(int i,int j){return f[i]-f[j]+sum[i]*sum[i]-sum[j]*sum[j];}
inline ll getx(int i,int j){return sum[i]-sum[j];}
inline double slope(int i,int j){return 1.0*gety(i,j)/getx(i,j);}
int main(){
    n=read(),L=read()+1,hd=tl=1;
    for(int i=1;i<=n;++i)sum[i]=sum[i-1]+read();
    for(int i=1;i<=n;++i){
        sum[i]+=i;
        while(hd<tl&&slope(q[hd+1],q[hd])<=2*(sum[i]-L))++hd;
        f[i]=f[q[hd]]+(sum[i]-L-sum[q[hd]])*(sum[i]-L-sum[q[hd]]);
        while(hd<tl&&slope(q[tl],q[tl-1])>slope(i,q[tl]))--tl;
        q[++tl]=i;
    }
    cout<<f[n];
    return 0;
}

2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  4. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  7. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  8. bzoj1010: [HNOI2008]玩具装箱toy——斜率优化

    方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...

  9. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

随机推荐

  1. 前端-HTML练习题

    本小节重点: 熟练使用div+span布局,知道div和span的语义化的意思 熟悉对div.ul.li.span.a.img.table.form.input标签有深刻的认知,初期也了解他们,知道他 ...

  2. iOS开发-常用第三方开源框架介绍(你了解的ios只是冰山一角)--(转)

    图像: 1.图片浏览控件MWPhotoBrowser 实现了一个照片浏览器类似 iOS 自带的相册应用,可显示来自手机的图片或者是网络图片,可自动从网络下载图片并进行缓存.可对图片进行缩放等操作. 下 ...

  3. mongodb基础学习3-查询的复杂用法

    昨天看了一下查询,今天来说下查询的复杂用法,可以类比mysql的查询 $ne:不等于 $gt, $gte, $lt, $lte:大于,大于等于,小于,小于等于 $in $and $nor:相当于上面的 ...

  4. oracle惯用缩写的含义

    $ORACLE_HOME/bin下的utilities解释Binary              First Available        Description----------------- ...

  5. one by one 项目 part 1

    今天安装MySQL,我的系统是win8.1,安装包是mysql-5.7.17-winx64.zip,遇到了不少问题,特在此总结,希望能帮到遇到同样情况的人. 1.前面按照网上教程,先解压,然后在cmd ...

  6. ROC曲线和AUC值(转)

    http://www.cnblogs.com/dlml/p/4403482.html 分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperat ...

  7. DBA 招聘

    数据库管理员(资深) 眼控科技 10-19万 72小时反馈 上海 6小时前 大专及以上 2年以上经验 普通话 25-35岁 绩效奖金 带薪年假 午餐补助 定期体检 年底双薪 五险一金 职位描述: 工作 ...

  8. tomcat 设置内存

    SET JAVA_OPTS=-Xms256m -Xmx512m -XX:PermSize=256M -XX:MaxPermSize=512M -Xms :初始化堆内存值 -Xmx :堆内存最大值 -X ...

  9. How to create a Virtual Machine in SmartOS

    在SmartOS中,使用vmadm创建工具创建虚拟机. 此工具需要一个JSON有效负载,并使用输入JSON中指定的属性创建“kvm”或“joyent” brand zone. 正常输出是一系列单行JS ...

  10. 用Python写单向链表和双向链表

    链表是一种数据结构,链表在循环遍历的时候效率不高,但是在插入和删除时优势比较大. 链表由一个个节点组成. 单向链表的节点分为两个部分:存储的对象和对下一个节点的引用.注意是指向下一个节点. 而双向链表 ...