2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门
一道经典的斜率优化dp。
推式子ing。。。
令f[i]表示装前i个玩具的最优代价。
然后用老套路。
我们只考虑把第j+1" role="presentation" style="position: relative;">j+1j+1~i" role="presentation" style="position: relative;">ii个玩具分成一组的情况,之前的1~j个自行按最优情况分组。
显然有f[i]=f[j]+(sum[i]−sum[j]+L)2" role="presentation" style="position: relative;">f[i]=f[j]+(sum[i]−sum[j]+L)2f[i]=f[j]+(sum[i]−sum[j]+L)2
那么对于决策j,k。
谁对i的贡献更优呢?
我们假设j更优。
显然有
f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2" role="presentation" style="position: relative;">f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2f[i]=f[j]+(sum[i]−sum[j]+L)2<f[i]=f[k]+(sum[i]−sum[k]+L)2
=>f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]" role="presentation" style="position: relative;">f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]f[j]+sum[j]2−2sum[i]∗sum[j]<f[k]+sum[k]2−2sum[i]∗sum[k]
设T[t]=f[t]+sum[t]2" role="presentation" style="position: relative;">T[t]=f[t]+sum[t]2T[t]=f[t]+sum[t]2
=>(T[j]−T[k])/(sum[j]−sum[k])<2sum[i]" role="presentation" style="position: relative;">(T[j]−T[k])/(sum[j]−sum[k])<2sum[i](T[j]−T[k])/(sum[j]−sum[k])<2sum[i]
这不就是斜率优化么?
用队列维护一下就行了。
继续分析会发现应该维护单调递增的斜率,也就是维护一个下凸壳。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 50005
using namespace std;
inline ll read(){
ll ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
int n,hd,tl,q[N];
ll L,sum[N],f[N];
inline ll gety(int i,int j){return f[i]-f[j]+sum[i]*sum[i]-sum[j]*sum[j];}
inline ll getx(int i,int j){return sum[i]-sum[j];}
inline double slope(int i,int j){return 1.0*gety(i,j)/getx(i,j);}
int main(){
n=read(),L=read()+1,hd=tl=1;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+read();
for(int i=1;i<=n;++i){
sum[i]+=i;
while(hd<tl&&slope(q[hd+1],q[hd])<=2*(sum[i]-L))++hd;
f[i]=f[q[hd]]+(sum[i]-L-sum[q[hd]])*(sum[i]-L-sum[q[hd]]);
while(hd<tl&&slope(q[tl],q[tl-1])>slope(i,q[tl]))--tl;
q[++tl]=i;
}
cout<<f[n];
return 0;
}
2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)的更多相关文章
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
随机推荐
- as3 对于加载进来多层swf缩放操作
//swf实际尺寸 var oldWidth:Number = frameLder.contentLoaderInfo.content.width; var oldHeight:Number = fr ...
- UILabel 自适应高度,宽度
mLabel1 = [[UILabel alloc]initWithFrame:CGRectMake(0, 20, 10, 1)]; mLabel1.text = @"my label 1, ...
- ARMV7,ARMV8
ARMV7是32位,2011年出了ARMV8,是64位架构,IPHONE5S以上都是64位架构,说明是使用ARMV8??
- Shiro权限总结
参考学习地址 shiro 瞅完就会用(ssm+shiro) Spring Shiro配置实现用户认证和授权 anon:它对应的过滤器里面是空的,什么都没做,另外.do和.jsp后面的*表示参 ...
- jQuery:总体掌握
链式编程....方法多,属性无法得到对象进行链式.vs10自动完成.书籍锋利的jQuery vsdoc有智能提示开发时候用,开发完之后,换成min压缩版的. 经验:打开网站文件夹.可以把vs网站上的解 ...
- c# 7 vs2017 tuple
var unnamed = (42, "The meaning of life"); var anonymous = (16, "a perfect square& ...
- 大型运输行业实战_day09_2_站间互售实现
1.添加站间互售入口 对应的html代码 <button onclick="otherStation()">站间互售</button> 对应的js发送函数 ...
- maven tomcat7 远程热部署
在maven项目开发中,一般推荐使用jetty进行开发调试.但是在项目发布的时候要求使用tomcat7作为发布服务器,为此在maven中配置了tomcat7插件,以支持项目在外部tomcat7进行远程 ...
- shell脚本通过expect脚本实现自动输入密码(使用expect)
背景:在远程文件下载时,需要输入对方的服务器密码,shell不支持交互输入内容,可以用下面两种方式实现 一.在shell脚本中嵌入expect来实现密码输入 expect是一个自动交互功能的工具. ...
- Mysql两个time类型计算时间相减
round((UNIX_TIMESTAMP(finishtime)-UNIX_TIMESTAMP(starttime))/60) 得到的时间是分钟数