#include <iostream>
#define MAXN 20
using namespace std;
__int64 cat[MAXN];
int sum;
void give_catalan();
void dfs(int node,int num);
int main()
{
//freopen("acm.acm","r",stdin);
give_catalan();
int n;
int i;
int sum;
while(cin>>n,n)
{
sum = ;
for(i = ; sum < n; ++ i)
{
sum += cat[i];
}
-- i;
sum -= cat[i];
dfs(i,n-sum);
cout<<endl;
}
} void dfs(int node,int num)
{
if(node == )
{
cout<<'X';
return;
}
int i;
int j;
int sum = ;
for(i = ; sum < num; ++i)
{
sum += cat[i]*cat[node-i-];
}
-- i;
sum -= cat[i]*cat[node-i-];
num -= sum;
if(i > )
{
cout<<"(";
dfs(i,(num-)/cat[node-i-]+);
cout<<")";
}
cout<<'X';
if(node--i > )
{
cout<<"(";
dfs(node--i,(num-)% cat[node-i-]+);
cout<<")";
}
}
void give_catalan()
{
int i;
int j;
cat[] = ;
cat[] = ;
for(i = ; i < ; ++ i)
{
cat[i] = *(*(i-)+)*cat[i-]/(i+);
// printf("%d\n",cat[i]);
}
}
/*
定理:n个结点能形成的二叉树总数为 卡特兰数 C(2n,n)/(n+1) 或者由递推公式Ci+1=2*(2*i+1) /(i+2)*Ci
for(i=2;i<20;i++)
{
a[i]=2*(2*(i-1)+1)*a[i-1]/(i+1) ;//卡特兰数递推公式
b[i]=b[i-1]+a[i];
} (2).继续转化问题,这棵树的左子树和右子树各有结点数多少?设这棵树左子树的结点数为i,右子树的结点数为n-i-1,
那么这棵树是又左子树的结点数为i,右子树的结点数为n-i-1的形态的第几种(设为第s种)?可以知道当1<=k<=L[0]*L[n-1]时,
左子树结点树为0,右子树结点数为n-1,s=k;L[0]*L[n-1]+1<=k<=L[1]*L[n-2]时,,左子树结点树为1,
右子树结点数为n-2,s=k- L[0]*L[n-1] ;...当L[i-1]*L[n-i]+1<= L[i]*L[n-i+1]时,左子树结点树为i,
右子树结点数为n-i-1, 。 (3).继续想象s增长的过程即为树形态不断发生变化的过程。那么首先是右子树在发生变化,从1到L[n-i-1]。
继续增长,右子树的形态复位为1,而左子树的形态增加1.因此右子树相当于秒针,左子树相当于分针。
对于s,该树的左子树编号为(s-1)/L[n-i-1]+1,右子树编号为(s-1)% L[n-i-1]+1。 (4).fun(n,k)的递归终止条件很容易知道,为n==1。此时树的形态只有一种,所以直接打印X。
*/

关注我的公众号,当然,如果你对Java, Scala, Python等技术经验,以及编程日记,感兴趣的话。

技术网站地址: vmfor.com

POJ 1095的更多相关文章

  1. poj 1095 Trees Made to Order

    http://poj.org/problem?id=1095 先求出n个节点数的二叉树的形态有多少种.卡特兰数f[n]=f[n-1]*(4*n-2)/(n+1);再递归求. #include < ...

  2. POJ 1095 Trees Made to Order(卡特兰数列)

    题目链接 中间计算的各种细节.有的细节没处理好,就wa了...主要思路就是根据卡特兰数列的: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n&g ...

  3. poj 1095 Trees Made to Order 卡特兰数

    这题用到了卡特兰数,详情见:http://www.cnblogs.com/jackge/archive/2013/05/19/3086519.html 解体思路详见:http://blog.csdn. ...

  4. poj 1095 题解(卡特兰数+递归

    题目 题意:给出一个二叉树的编号,问形态. 编号依据 1:如果二叉树为空,则编号为0: 2:如果二叉树只有一个节点,则编号为1: 3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编 ...

  5. POJ 1095 Trees Made to Order 最详细的解题报告

    题目来源:Trees Made to Order 题目大意:根据下面的规则给一棵二叉树编号: 规则1:如果二叉树为空,则编号为0: 规则2:如果二叉树只有一个节点,则编号为1: 规则3:所有含有m个节 ...

  6. poj很好很有层次感(转)

    OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 30 ...

  7. POJ题目分类推荐 (很好很有层次感)

    著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299 ...

  8. POJ推荐50题

    此文来自北京邮电大学ACM-ICPC集训队 此50题在本博客均有代码,可以在左侧的搜索框中搜索题号查看代码. 以下是原文: POJ推荐50题1.标记“难”和“稍难”的题目可以看看,思考一下,不做要求, ...

  9. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

随机推荐

  1. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  2. py-函数进阶

    名称空间 又名name space, 顾名思义就是存放名字的地方,存什么名字呢?举例说明,若变量x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方 名称空间共3种, ...

  3. Criteria查询

    1.Criteria表达式 Criteria c=session.createCriteria(User.class); List result=c.list(); Iterator it=resul ...

  4. Notification的功能和用法 加薪通知

    实现通知栏消息的生成和消除 MainActivity.java        public class MainActivity extends Activity   {       static f ...

  5. N个数的最大公约数

    #include <iostream> using namespace std; int main() { int c; ]={,,,}; ;i<;i++) { ]<m[i]) ...

  6. Hdu1548 A strange lift 2017-01-17 10:34 35人阅读 评论(0) 收藏

    A strange lift Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Tota ...

  7. 使用WinSCP在Windows和Linux系统之间传输文件

    小梅哥编写,未经许可,严禁用于任何商业用途 2018年6月30日 在日常SoC开发中,我们经常需要在Windows和Linux系统之间传输文件,例如在Windows系统上的DS-5集成开发环境中编写好 ...

  8. api接口签名相关文章

    http://www.cnblogs.com/hnsongbiao/p/5478645.htmlhttp://www.cnblogs.com/codeon/p/5900914.html?from=ti ...

  9. 使用Postman验证TFS Rest API

    概述 你可能已经了解到,TFS自2015版本发布以来,开始支持通过REST API的方式提供接口服务,第三方平台可以通过通用的HTTP协议访问TFS系统,获取数据.请求编译等.REST API在原有. ...

  10. linux系统编程之进程(一):进程与程序

    本节目标: 什么是程序 什么是进程 进程数据结构 进程与程序区别与联系 一,什么是程序? 程序是完成特定任务的一系列指令集合 二,什么是进程? 从用户的角度来看进程是程序的一次动态执行过程 从操作系统 ...