R语言颜色综合运用与色彩方案共享
R语言颜色综合运用与色彩方案共享
今天这篇主要讲解R语言颜色综合运用,主要跟大家介绍如何提取那些专业色彩包中的颜色搭配用于在基础绘图系统和高级绘图系统中共享。
其实无论是R语言的预设配色系统、自定义颜色表还是哪些专属配色包,我们所使用(或者R语言识别的)的仅仅就是一组字符向量所代表的色值而已,并不神秘。
通过scales中的色彩获取函数,我们可以将专属配色主题(RColorBrewer、ggthemes)中的配色主题提取出来,以函数的形式传递给基础绘图系统(plot)以及ggplot绘图系统。
本文按照三部分进行讲解:
RColorBrewer部分:
ggthemes部分:
scales::brewer.pal运用:
RColorBrewer部分
关于RColorBrewer包之前在写ggplot函数系统的时候已经有所涉猎,其中专门讲解过它的官方配色网站:http://colorbrewer2.org/#
这是一个非常神奇的网站,RColorBrewer包中的配色方案全部来源于此,而且网站上允许自定义色彩序列和类型,衍生出来的颜色要比该包中的配色资源多出很多倍。
library(RColorBrewer)
display.brewer.pal(n, name)
display.brewer.all(type="all")
ColorBrewer设计团队将配色方案分为三种:
seq:连续渐变色
div:双向渐变色
qual:分类色
通过display函数可以查看不同类型的色板:
颜色查看:
display.brewer.all(type = "all") #查看所有色板
display.brewer.all(type = "seq") #查看单色渐变色板
display.brewer.all(type = "div") #查看双色渐变色板
display.brewer.all(type = "qual") #查看离散(分类)色板
以上通过display四个函数成功显示了全部色板、单色渐变色板、双色渐变色板、离散(分类)色板
当然你也可以通过display.brewer.pal(n, name)函数显示指定名称的颜色主题:
display.brewer.pal(9, "BuGn")
par(mfrow=c(1,5),mar=c(1,1,2,1),xaxs="i", yaxs="i")
mycolors<-brewer.pal(9, "BuGn")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of BuGn ")
mycolors<-brewer.pal(9, "OrRd")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of OrRd")
mycolors<-brewer.pal(9, "YlGn")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of YlGn")
mycolors<-brewer.pal(9, "Oranges")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of Oranges")
mycolors<-brewer.pal(9, "Blues")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of Blues")
dev.off()
大家已经看到了,通过brewer.pal(n, "name")函数,可以很轻松的提取出你想要的配色主题。
如果你想要某个配色主题的其中几个色值,可使用如下方式提取:
display.brewer.pal(6, "BuGn")#按顺序提取前六个
如果想要提取某一组色彩主题不连续的颜色,可以使用文本函数:
library(scales)
a<-brewer.pal(9, "BuGn")
show_col(a[c(1,3,5,7,9)],labels=F)
通过向量合并,你还可以自己从色彩包中自定义色彩方案。
b1<-brewer.pal(9, "BuGn");b2<-brewer.pal(9,"Blues")
c<-c(b1[c(1,3,5,7,9)],b2[c(2,4,6,8)])
show_col(c,labels=F)
其实都是些很简单的文本函数组合,毕竟色彩方案在软件中也就是一组字符向量而已。
以上这些色彩方案可以很容易的应用到基础绘图系统和ggplot绘图系统中。
c<-c(50,30,50,70,90,40)
names(c)<-LETTERS[1:6]
mycolor<-brewer.pal(9,"Greens")
pie(sort(c,decreasing=T),labels=names(c),col=mycolor[c(3,5,5,6,7,9)],clockwise=T,radius=1,border=F)
library(ggplot2)
library(plyr)
mydata<-data.frame(c)
ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())+
scale_fill_brewer(palette="Greens",labels=c("E", "D", "A","C","F","B"))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
ggthemes部分
接下来讲解ggthemes部分,其实ggthemes包原本是转为ggplot2包开发的辅助包(前面加的前缀——gg就可以看出来,这种包还有很多),里面提供了大量高质量的主题、颜色方案。其中就有我们所熟知的economist主题方案以及wsj方案,还有诸如stata、excel、tableau、solarized、tufte等主题方案。
ggthemes包中的色彩方案都是打包好,命名过的,所以我们引用的时候,只需赋值即可。
这里以economist和WSJ为例:
library(ggthemes)
m1<-economist_pal()(6)
show_col(m1)
mycolor<-m1<-economist_pal()(5)
pie(sort(c,decreasing=T),labels=names(6),col=mycolor,border=F,clockwise=T,init.angle=90,radius=1)
ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())+
scale_fill_economist(labels=c("E", "D", "A","C","F","B"))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
m2<-wsj_pal()(6)
show_col(m2)
mycolor<-m1<-wsj_pal()(6)
pie(sort(c,decreasing=T),labels=names(c),col=mycolor,border=F,clockwise=T,init.angle=90,radius=1)
ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())+
scale_fill_wsj(labels=names(c))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
其实关于economist和wsj的配色主题远不止这些元素,里面规定了详细的序列用色标准、线条用色标准、形状标准和背景色参考方案,这些信息,你可以通过使用ggthemes_data函数进行查看:
#WSJ背景色
ggthemes_data$wsj$bg
gray green blue brown
"#efefef" "#e9f3ea" "#d4dee7" "#f8f2e4"
#WSJ主题色
ggthemes_data$wsj$palettes #主题色
$rgby
yellow red blue green
"#d3ba68" "#d5695d" "#5d8ca8" "#65a479"
$red_green
green red
"#088158" "#ba2f2a"
$black_green
black gray ltgreen green
"#000000" "#595959" "#59a77f" "#008856"
$dem_rep
blue red gray
"#006a8e" "#b1283a" "#a8a6a7"
$colors6
red blue gold green orange black
"#c72e29" "#016392" "#be9c2e" "#098154" "#fb832d" "#000000"
#economist背景色:
ggthemes_data$economist$bg
#economist主题色:
ggthemes_data$economist$fg
也可以使用scales包中的show_col函数进行颜色的图形化输出:
显示主题颜色:
《华尔街日报》
show_col(ggthemes_data$wsj$bg) #背景色
show_col(ggthemes_data$wsj$palettes$rgby) #rgby
show_col(ggthemes_data$wsj$palettes$red_green) #red_green
show_col(ggthemes_data$wsj$palettes$black_green) #black_green
show_col(ggthemes_data$wsj$palettes$dem_rep) #dem_rep
show_col(ggthemes_data$wsj$palettes$colors6) #colors6
《经济学人》
show_col(ggthemes_data$economist$bg) #背景色
show_col(ggthemes_data$economist$fg) #主题色
show_col(ggthemes_data$economist$stata) #基于stata的配色方案
以上ggthemes包中的所有颜色,你都可以通过names_pal()(n)的格式进行提取,然后使用文本函数进行抽取、转化、合并,自由搭配出属于自己的专属配色方案
scales包的brewer_pal函数
接下来的时间我会将全部精力放在brewer_pal函数上,告诉你为什么,因为这个函数是scales专门为图形标度所设置的颜色设置函数,而以上我们所述的RColorBrewer里面的brewer.pal以及ggthemes包中的names_pal函数,是用于提取自己的配色方案,适用范围较小。
library("scales")
brewer_pal(type = "seq", palette = 1, direction = 1)
该函数直接对接RColorBrewer包中的配色主题,但是增加了一些输出参数,可以对输出的主题进行更加灵活的自定义操作。
type设置颜色种类,palette设置色板(可以是字符名称,也可以是编号),direction设置颜色输出顺序(默认为原始顺序,-1代表倒序,对于连续渐变类型的色板比较重要)。
show_col(brewer_pal()(10))
show_col(brewer_pal("div")(5))
show_col(brewer_pal(palette = "Greens")(5))
可以看出来,brewer_pal()函数允许通过色板类型、色彩数据、主题类型进行筛选输出。
我们可以通过brewer_pal函数将色彩信息传递给指定向量,或者直接将brewer_pal指定给col或者fill等图表中的标度参数。
par(mfrow=c(1,2),mar=c(1,1,2,1),xaxs="i", yaxs="i")
pie(rep(1,times=6),labels="",col=brewer_pal(palette="Greens")(6),border=F,radius=1,clockwise=T)
pie(rep(1,times=6),labels="",col=brewer_pal(palette="Greens",direction =-1)(6),border=F,radius=1,clockwise=T)
因为ggplot中有专用于RColorBrewer的色彩主题函数scale_fill(colour)_brewer(),用于对接RColorBrewer中的色彩库,所以我们想要在ggplot图表系统中使用RColorBrewer中的配色主题,不必使用brewer_pal进行提取。
并且,brewer_pal函数内的参数,在scale_fill(colour)_brewer()函数内也可以使用,对色彩方案进行筛选、抽取。
library(Rmisc)
library(lattice)
p1<- ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position="top")+
scale_fill_brewer(palette="Greens",labels=names(c))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
p2<- ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position="top")+
scale_fill_brewer(palette="Greens",direction =-1,labels=names(c))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
multiplot(p1,p2,cols=2)
除此之外,还有一个叫ggtech的包,专门为ggplot2包提供科技公司风格配色方案。仔细看了包,没有取色函数,但是提供了全部的色值信息。
library(ggtech)
tech_key = list(airbnb = c("#FF5A5F","#FFB400", "#007A87", "#FFAA91", "#7B0051"),
facebook = c("#3b5998","#6d84b4", "#afbdd4", "#d8dfea"),
google = c("#5380E4", "#E12A3C", "#FFBF03","#00B723"),
etsy = c("#F14000", "#67B6C3", "#F0DA47", "#EBEBE6", "#D0D0CB"),
twitter = c("#55ACEE", "#292f33", "#8899a6", "#e1e8ed"))
show_col(tech_key$airbnb)
show_col(tech_key$facebook)
show_col(tech_key$google)
show_col(tech_key$etsy)
show_col(tech_key$twitter)
以上是今天所要讲的主要内容,因为关于这块儿的内容,非常丰富,我也只能涉略一点儿,想要了解更多的R语言配色知识,可以参考详细的官方文档。
本文由EasyCharts团队原创,转载请注明出处
R语言颜色综合运用与色彩方案共享
今天这篇主要讲解R语言颜色综合运用,主要跟大家介绍如何提取那些专业色彩包中的颜色搭配用于在基础绘图系统和高级绘图系统中共享。
其实无论是R语言的预设配色系统、自定义颜色表还是哪些专属配色包,我们所使用(或者R语言识别的)的仅仅就是一组字符向量所代表的色值而已,并不神秘。
通过scales中的色彩获取函数,我们可以将专属配色主题(RColorBrewer、ggthemes)中的配色主题提取出来,以函数的形式传递给基础绘图系统(plot)以及ggplot绘图系统。
本文按照三部分进行讲解:
RColorBrewer部分:
ggthemes部分:
scales::brewer.pal运用:
RColorBrewer部分
关于RColorBrewer包之前在写ggplot函数系统的时候已经有所涉猎,其中专门讲解过它的官方配色网站:http://colorbrewer2.org/#
这是一个非常神奇的网站,RColorBrewer包中的配色方案全部来源于此,而且网站上允许自定义色彩序列和类型,衍生出来的颜色要比该包中的配色资源多出很多倍。
library(RColorBrewer)
display.brewer.pal(n, name)
display.brewer.all(type="all")
ColorBrewer设计团队将配色方案分为三种:
seq:连续渐变色
div:双向渐变色
qual:分类色
通过display函数可以查看不同类型的色板:
颜色查看:
display.brewer.all(type = "all") #查看所有色板
display.brewer.all(type = "seq") #查看单色渐变色板
display.brewer.all(type = "div") #查看双色渐变色板
display.brewer.all(type = "qual") #查看离散(分类)色板
以上通过display四个函数成功显示了全部色板、单色渐变色板、双色渐变色板、离散(分类)色板
当然你也可以通过display.brewer.pal(n, name)函数显示指定名称的颜色主题:
display.brewer.pal(9, "BuGn")
par(mfrow=c(1,5),mar=c(1,1,2,1),xaxs="i", yaxs="i")
mycolors<-brewer.pal(9, "BuGn")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of BuGn ")
mycolors<-brewer.pal(9, "OrRd")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of OrRd")
mycolors<-brewer.pal(9, "YlGn")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of YlGn")
mycolors<-brewer.pal(9, "Oranges")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of Oranges")
mycolors<-brewer.pal(9, "Blues")
barplot(rep(1,times=9),col=mycolors,border=mycolors,axes=FALSE, horiz=T,main="MyColors of Blues")
dev.off()
大家已经看到了,通过brewer.pal(n, "name")函数,可以很轻松的提取出你想要的配色主题。
如果你想要某个配色主题的其中几个色值,可使用如下方式提取:
display.brewer.pal(6, "BuGn")#按顺序提取前六个
如果想要提取某一组色彩主题不连续的颜色,可以使用文本函数:
library(scales)
a<-brewer.pal(9, "BuGn")
show_col(a[c(1,3,5,7,9)],labels=F)
通过向量合并,你还可以自己从色彩包中自定义色彩方案。
b1<-brewer.pal(9, "BuGn");b2<-brewer.pal(9,"Blues")
c<-c(b1[c(1,3,5,7,9)],b2[c(2,4,6,8)])
show_col(c,labels=F)
其实都是些很简单的文本函数组合,毕竟色彩方案在软件中也就是一组字符向量而已。
以上这些色彩方案可以很容易的应用到基础绘图系统和ggplot绘图系统中。
c<-c(50,30,50,70,90,40)
names(c)<-LETTERS[1:6]
mycolor<-brewer.pal(9,"Greens")
pie(sort(c,decreasing=T),labels=names(c),col=mycolor[c(3,5,5,6,7,9)],clockwise=T,radius=1,border=F)
library(ggplot2)
library(plyr)
mydata<-data.frame(c)
ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())+
scale_fill_brewer(palette="Greens",labels=c("E", "D", "A","C","F","B"))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
ggthemes部分
接下来讲解ggthemes部分,其实ggthemes包原本是转为ggplot2包开发的辅助包(前面加的前缀——gg就可以看出来,这种包还有很多),里面提供了大量高质量的主题、颜色方案。其中就有我们所熟知的economist主题方案以及wsj方案,还有诸如stata、excel、tableau、solarized、tufte等主题方案。
ggthemes包中的色彩方案都是打包好,命名过的,所以我们引用的时候,只需赋值即可。
这里以economist和WSJ为例:
library(ggthemes)
m1<-economist_pal()(6)
show_col(m1)
mycolor<-m1<-economist_pal()(5)
pie(sort(c,decreasing=T),labels=names(6),col=mycolor,border=F,clockwise=T,init.angle=90,radius=1)
ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())+
scale_fill_economist(labels=c("E", "D", "A","C","F","B"))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
m2<-wsj_pal()(6)
show_col(m2)
mycolor<-m1<-wsj_pal()(6)
pie(sort(c,decreasing=T),labels=names(c),col=mycolor,border=F,clockwise=T,init.angle=90,radius=1)
ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())+
scale_fill_wsj(labels=names(c))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
其实关于economist和wsj的配色主题远不止这些元素,里面规定了详细的序列用色标准、线条用色标准、形状标准和背景色参考方案,这些信息,你可以通过使用ggthemes_data函数进行查看:
#WSJ背景色
ggthemes_data$wsj$bg
gray green blue brown
"#efefef" "#e9f3ea" "#d4dee7" "#f8f2e4"
#WSJ主题色
ggthemes_data$wsj$palettes #主题色
$rgby
yellow red blue green
"#d3ba68" "#d5695d" "#5d8ca8" "#65a479"
$red_green
green red
"#088158" "#ba2f2a"
$black_green
black gray ltgreen green
"#000000" "#595959" "#59a77f" "#008856"
$dem_rep
blue red gray
"#006a8e" "#b1283a" "#a8a6a7"
$colors6
red blue gold green orange black
"#c72e29" "#016392" "#be9c2e" "#098154" "#fb832d" "#000000"
#economist背景色:
ggthemes_data$economist$bg
#economist主题色:
ggthemes_data$economist$fg
也可以使用scales包中的show_col函数进行颜色的图形化输出:
显示主题颜色:
《华尔街日报》
show_col(ggthemes_data$wsj$bg) #背景色
show_col(ggthemes_data$wsj$palettes$rgby) #rgby
show_col(ggthemes_data$wsj$palettes$red_green) #red_green
show_col(ggthemes_data$wsj$palettes$black_green) #black_green
show_col(ggthemes_data$wsj$palettes$dem_rep) #dem_rep
show_col(ggthemes_data$wsj$palettes$colors6) #colors6
《经济学人》
show_col(ggthemes_data$economist$bg) #背景色
show_col(ggthemes_data$economist$fg) #主题色
show_col(ggthemes_data$economist$stata) #基于stata的配色方案
以上ggthemes包中的所有颜色,你都可以通过names_pal()(n)的格式进行提取,然后使用文本函数进行抽取、转化、合并,自由搭配出属于自己的专属配色方案
scales包的brewer_pal函数
接下来的时间我会将全部精力放在brewer_pal函数上,告诉你为什么,因为这个函数是scales专门为图形标度所设置的颜色设置函数,而以上我们所述的RColorBrewer里面的brewer.pal以及ggthemes包中的names_pal函数,是用于提取自己的配色方案,适用范围较小。
library("scales")
brewer_pal(type = "seq", palette = 1, direction = 1)
该函数直接对接RColorBrewer包中的配色主题,但是增加了一些输出参数,可以对输出的主题进行更加灵活的自定义操作。
type设置颜色种类,palette设置色板(可以是字符名称,也可以是编号),direction设置颜色输出顺序(默认为原始顺序,-1代表倒序,对于连续渐变类型的色板比较重要)。
show_col(brewer_pal()(10))
show_col(brewer_pal("div")(5))
show_col(brewer_pal(palette = "Greens")(5))
可以看出来,brewer_pal()函数允许通过色板类型、色彩数据、主题类型进行筛选输出。
我们可以通过brewer_pal函数将色彩信息传递给指定向量,或者直接将brewer_pal指定给col或者fill等图表中的标度参数。
par(mfrow=c(1,2),mar=c(1,1,2,1),xaxs="i", yaxs="i")
pie(rep(1,times=6),labels="",col=brewer_pal(palette="Greens")(6),border=F,radius=1,clockwise=T)
pie(rep(1,times=6),labels="",col=brewer_pal(palette="Greens",direction =-1)(6),border=F,radius=1,clockwise=T)
因为ggplot中有专用于RColorBrewer的色彩主题函数scale_fill(colour)_brewer(),用于对接RColorBrewer中的色彩库,所以我们想要在ggplot图表系统中使用RColorBrewer中的配色主题,不必使用brewer_pal进行提取。
并且,brewer_pal函数内的参数,在scale_fill(colour)_brewer()函数内也可以使用,对色彩方案进行筛选、抽取。
library(Rmisc)
library(lattice)
p1<- ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position="top")+
scale_fill_brewer(palette="Greens",labels=names(c))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
p2<- ggplot(data=mydata,aes(x=factor(1),y=c,fill=factor(c),order=desc(c)))+
geom_bar(stat="identity",width=1,col="white")+
coord_polar(theta = "y",start=0)+
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position="top")+
scale_fill_brewer(palette="Greens",direction =-1,labels=names(c))+
guides(fill=guide_legend(reverse=TRUE,title=NULL))
multiplot(p1,p2,cols=2)
除此之外,还有一个叫ggtech的包,专门为ggplot2包提供科技公司风格配色方案。仔细看了包,没有取色函数,但是提供了全部的色值信息。
library(ggtech)
tech_key = list(airbnb = c("#FF5A5F","#FFB400", "#007A87", "#FFAA91", "#7B0051"),
facebook = c("#3b5998","#6d84b4", "#afbdd4", "#d8dfea"),
google = c("#5380E4", "#E12A3C", "#FFBF03","#00B723"),
etsy = c("#F14000", "#67B6C3", "#F0DA47", "#EBEBE6", "#D0D0CB"),
twitter = c("#55ACEE", "#292f33", "#8899a6", "#e1e8ed"))
show_col(tech_key$airbnb)
show_col(tech_key$facebook)
show_col(tech_key$google)
show_col(tech_key$etsy)
show_col(tech_key$twitter)
以上是今天所要讲的主要内容,因为关于这块儿的内容,非常丰富,我也只能涉略一点儿,想要了解更多的R语言配色知识,可以参考详细的官方文档。
其实这一系列内容还有一个姊妹篇(上篇《R预设配色系统及自定义色板》),推送在小魔方的个人公众号——“数据小魔方”上,主要内容是关于R语言预设的配色系统和目前可以调用的自定义颜色的调取与组合、转换等信息。如果你想要了解详情的话,可以去那里查看,阅读原文可以直达。
点击原文阅读该篇内容的姊妹篇:《R预设配色系统及自定义色板》
本文由EasyCharts团队原创,转载请注明出处
送福利啦!
☑ 长按文末二维码,关注EasyCharts公众号;
☑ 后台回复“数据之美”,提前获取与书籍配套的Excel源文件和EasyCharts插件的下载地址!
简介
本书主要介绍基于Excel 2016的学术专业图表和商业图表的绘制方法,首次引入R ggplot 2,Python Seaborn, Tableau, D3.js, Matlab 2015, Origin等绘图软件的图表风格与配色方案,在无需编程的情况下,就能实现这些软件的图表风格;同时对比并总结了《华尔街日报》、《商业周刊》、《经济学人》等商业经典杂志的图表风格。在详细地介绍散点图、柱形图、面积图、雷达图等基本图表的基础上,增加介绍了Excel 2016新增的图表、Excel 加载项 Map Power (地图绘制功能)和E2D3等的使用方法。
作者开发了一款与本书配套使用的 Excel 插件“EasyCharts”,可以实现图表美化、新型图表绘制、颜色拾取、数据拾取、图像截取、数据分析与可视化等功能,插件交流群:454614789。
在公众号中回复“买书”,即可收到购买链接哦!
R语言颜色综合运用与色彩方案共享的更多相关文章
- 转载 R语言颜色基础设置
原文链接:http://www.biostatistic.net/thread-5065-1-1.html R语言在画图形的时候,经常遇到颜色设定问题,用户可以根据color.rgb值和hsv值来设定 ...
- 【转】R语言知识体系概览
摘要:R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言. 最近遇到很多的程序员都想转行到数据分析,于是就开 ...
- R语言基本绘图-plot参数:标题,坐标轴和颜色
标题 plot(c(1:2,2:4),main = "这是主标题",sub = "这是副标题",xlab = "这是x轴", ylab = ...
- R语言与医学统计图形【8】颜色的选取
R语言基础绘图系统 基础绘图包之低级绘图函数--内置颜色. 1.内置颜色选取 功能657种内置颜色.colors() 调色板函数:palette(), rgb(), rainbow(). palett ...
- R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将 ...
- R语言书籍的学习路线图
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑 ...
- 主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...
- 第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制 ...
- 第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发 ...
随机推荐
- bing词典
一.bug寻找 bug1:点击单词挑战之后选择四级词汇,然后一直狂击答案,点到一个时候就会出现一个情况:不管点击哪一个选项都不会跳至下一题,而且屏幕上方的已做题目数 x/20中的x会乱跳. bug2: ...
- 2017 Summary
几门课 基础电路与电子学 知道了一些二极管三极管的基本基本很基本的那种物理知识吧,但是毕竟我是从电信转专业过来的,所以说我内心就是逃避模电这样的课的.上课基本没听,后面只是死命复习了一周,考的还可以. ...
- java中方法传入参数时:值传递还是址传递?
JAVA中的数据类型有两大类型: ① 基本数据类型:逻辑型(boolean).文本型(char).整数型(byte.short.int.long).浮点型(float.double) ② 引用数据类型 ...
- Java中的多线程科普
如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个话其 ...
- windows多线程(十一) 更安全的创建线程方式_beginthreadex()
一.原因分析 CreateThread()函数是Windows提供的API接口,在C/C++语言另有一个创建线程的函数_beginthreadex(),我们应该尽量使用_beginthreadex() ...
- windows多线程(九) PV原语分析同步问题
一.PV原语介绍 PV原语通过操作信号量来处理进程间的同步与互斥的问题.其核心就是一段不可分割不可中断的程序. 信号量的概念1965年由著名的荷兰计算机科学家Dijkstra提出,其基本思路是用一种新 ...
- SQL语句查询一个数据库中的所有表
--读取库中的所有表名 select name from sysobjects where xtype='u' --读取指定表的所有列名 select name from syscolumns whe ...
- elasticsearch6 学习之并发控制
环境:elasticsearch6.1.2 kibana6.1.2 并发问题无处不在 一.基于_version 的并发控制 在提交数据前先检查提交数据的version与es中存储的ve ...
- 在sql server ide里数据修改数据
在sql server 的客户端工具ssms里,只有在工具里打开后直接修改. 除了用这种方法外,还有其它方法可以改吗?比如像pl/sql里的for update sql server的客户端功能比较差 ...
- Common Substrings POJ - 3415(长度不小于k的公共子串的个数)
题意: 给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同) 分两部分求和sa[i-1] > len1 sa[i] < len1 和 sa[i-1] < ...