timeit使用

def f1(lIn):
l1 = sorted(lIn) # O(nlogn) C语言的
l2 = [i for i in l1 if i<0.5] # O(n)
return [i*i for i in l2] # O(k) def f2(lIn):
l1 = [i for i in lIn if i<0.5] # O(n)
l2 = sorted(l1) # O(klogk) C语言的
return [i*i for i in l2] # O(k) def f3(lIn):
l1 = [i*i for i in lIn] # O(n)
l2 = sorted(l1) # O(nlogn) C语言的
return [i for i in l2 if i<(0.5*0.5)] # O(n) import timeit
import random
l = [random.random() for i in range(100000)] t1 = timeit.Timer("f1(l)","from __main__ import random,l,f1")
t2 = timeit.Timer("f2(l)","from __main__ import random,l,f2")
t3 = timeit.Timer("f3(l)","from __main__ import random,l,f3")
print(t1.timeit(number=50)) # 3.0630057093816947
print(t2.timeit(number=50)) # 1.6970076176407773
print(t3.timeit(number=50)) # 3.30195772223185

或使用Ipython

def f1(lIn):
l1 = sorted(lIn) # O(nlogn) C语言的
l2 = [i for i in l1 if i<0.5] # O(n)
return [i*i for i in l2] # O(k)
def f2(lIn):
l1 = [i for i in lIn if i<0.5] # O(n)
l2 = sorted(l1) # O(klogk) C语言的
return [i*i for i in l2] # O(k)
def f3(lIn):
l1 = [i*i for i in lIn] # O(n)
l2 = sorted(l1) # O(nlogn) C语言的
return [i for i in l2 if i<(0.5*0.5)] # O(n)
import random
lIn = [random.random() for i in range(100000)] %timeit f1(lIn)
75.8 ms ± 917 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit f2(lIn)
39.3 ms ± 560 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit f3(lIn)
80 ms ± 1.09 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

使用cProfile

def f1(lIn):
l1 = sorted(lIn) # O(nlogn) C语言的
l2 = [i for i in l1 if i<0.5] # O(n)
return [i*i for i in l2] # O(k) def f2(lIn):
l1 = [i for i in lIn if i<0.5] # O(n)
l2 = sorted(l1) # O(klogk) C语言的
return [i*i for i in l2] # O(k) def f3(lIn):
l1 = [i*i for i in lIn] # O(n)
l2 = sorted(l1) # O(nlogn) C语言的
return [i for i in l2 if i<(0.5*0.5)] # O(n) import cProfile
import random
lIn = [random.random() for i in range(100000)]
cProfile.run('f1(lIn)')
cProfile.run('f2(lIn)')
cProfile.run('f3(lIn)') """
7 function calls in 0.125 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.120 0.120 11.py:1(f1)
1 0.020 0.020 0.020 0.020 11.py:3(<listcomp>)
1 0.009 0.009 0.009 0.009 11.py:4(<listcomp>)
1 0.005 0.005 0.125 0.125 <string>:1(<module>)
1 0.000 0.000 0.125 0.125 {built-in method builtins.exec}
1 0.091 0.091 0.091 0.091 {built-in method builtins.sorted}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 7 function calls in 0.044 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.041 0.041 11.py:6(f2)
1 0.007 0.007 0.007 0.007 11.py:7(<listcomp>)
1 0.006 0.006 0.006 0.006 11.py:9(<listcomp>)
1 0.003 0.003 0.044 0.044 <string>:1(<module>)
1 0.000 0.000 0.044 0.044 {built-in method builtins.exec}
1 0.028 0.028 0.028 0.028 {built-in method builtins.sorted}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 7 function calls in 0.068 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.065 0.065 11.py:11(f3)
1 0.006 0.006 0.006 0.006 11.py:12(<listcomp>)
1 0.010 0.010 0.010 0.010 11.py:14(<listcomp>)
1 0.002 0.002 0.068 0.068 <string>:1(<module>)
1 0.000 0.000 0.068 0.068 {built-in method builtins.exec}
1 0.049 0.049 0.049 0.049 {built-in method builtins.sorted}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
"""

测试效率 timeit cProfile的更多相关文章

  1. 测试效率加倍提升!shell 高阶命令快来 get 下!

    背景 目前大部分的项目都是部署在Linux系统上,作为测试,掌握常用Linux命令是必须的技能.很多的工作了好几年的测试人员可能还只会简单的ls.cd.cat等等这些命令,这些命令是可以应付工作的大部 ...

  2. Charles中使用Rewrite提高测试效率

    上次给大家演示了Charles中通过Map Local功能来提高测试效率,Charles还有另外一个强大的功能,Rewrite,这次也给大家演示一下. Charles中的Rewrite功能非常强大,可 ...

  3. 数据摘要算法的测试效率(SHA、MD5和CRC32)

    1.算法概述 数据摘要算法是密码学算法中非常重要的一个分支,它通过对所有数据提取指纹信息以实现数据签名.数据完整性校验等功能,由于其不可逆性,有时候会被用做敏感信息的加密.数据摘要算法也被称为哈希(H ...

  4. 专注于提高“人肉测试”效率,Bugtags已完成600万元天使轮融资

    导语:近日,专注于移动测试的缺陷发现及管理工具“Bugtags”创始人张磊独家透露,Bugtags已完成600万元天使轮投资,投资方为高捷资本. 近日,专注于移动测试的缺陷发现及管理工具“Bugtag ...

  5. Charles中使用Map Local提高测试效率

    书接上回,上次说到Charles中可以使用修改返回值来模拟接口返回,这次我们来说一下Charles中另外一个强大的功能. 我们用手机连接Charles,具体可以参考上一篇<借助Charles来测 ...

  6. java 20 -10 字节流四种方式复制mp3文件,测试效率

    电脑太渣,好慢..反正速率是: 高效字节流一次读写一个字节数组 > 基本字节流一次读写一个字节数组 > 高效字节流一次读写一个字节 > 基本字节流一次读写一个字节 前两个远远快过后面 ...

  7. Java基础知识强化之IO流笔记30:字节流4种方式复制mp4并测试效率

    1. 需求:把e:\\哥有老婆.mp4 复制到当前项目目录下的copy.mp4中 字节流四种方式复制文件: • 基本字节流一次读写一个字节 • 基本字节流一次读写一个字节数组 • 高效字节流一次读写一 ...

  8. SQLSERVER语句 in和exists哪个效率高本人测试证明

    SQLSERVR语句 in和exists哪个效率高本人测试证明 最近很多人讨论in和exists哪个效率高,今天就自己测试一下 我使用的是客户的数据库GPOSDB(已经有数据) 环境:SQLSERVE ...

  9. in和exists哪个效率高本人测试证明

    in和exists哪个效率高本人测试证明 SQLSERVR语句 in和exists哪个效率高自己测试本人测试证明 最近很多人讨论in和exists哪个效率高,今天就自己测试一下 我使用的是客户的数据库 ...

随机推荐

  1. 构建Vue开发环境

    1.开发环境的准备工作 IDE 可以选择WebStom或者VisualStudio Code Node.js的安装 node + npm 调试环境 Google Chrome + Vue.js 2.什 ...

  2. break,continue,return和exit的区别

    1.break break语句的使用场合主要是switch语句和循环结构. 在循环结构中使用break语句,就退出循环,接着执行循环结构下面的第一条语句. 如果在多重嵌套循环中使用break语句,当执 ...

  3. jmeter报错之“请在微信客户端打开链接”

    这是一个还没解决的问题,这里纯粹记录自己思考的过程,后续给自己参考. 先说明情景:对微信公众号的一个接口进行调用跑通,后续可能需要压测(是的,仅仅是调通一个接口而已o(╥﹏╥)o) 1.按照我理解的正 ...

  4. 记一次异机rman还原后的操作

    当时从主库通过rman备份到目前测试库还原之后,由于备份是在备库备份的,所以数据库还原后状态为readonly,standby_file_management参数为auto.首先需要通过alter d ...

  5. http://browniefed.com/blog/2015/09/10/the-shapes-of-react-native/

    http://browniefed.com/blog/2015/09/10/the-shapes-of-react-native/

  6. JavaWeb基础—EL表达式与JSTL标签库

    EL表达式: EL 全名为Expression Language.EL主要作用 获取数据(访问对象,访问数据,遍历集合等) 执行运算 获取JavaWeb常用对象 调用Java方法(EL函数库) 给出一 ...

  7. Kubernetes学习之路(六)之创建K8S应用

    一.Deployment的概念 K8S本身并不提供网络的功能,所以需要借助第三方网络插件进行部署K8S中的网络,以打通各个节点中容器的互通. POD,是K8S中的一个逻辑概念,K8S管理的是POD,一 ...

  8. 查看Chrome浏览器扩展程序源码的两种方法

    注意:仅在当前最新的版本 55.0.2883.87 m (64-bit)上测试有效 首先获取extensionId: chrome 打开扩展程序页面 chrome://extensions/ 比如我想 ...

  9. 洛咕 P4556 [Vani有约会]雨天的尾巴

    终于把考试题清完了...又复活了... 树上差分,合并用线段树合并,但是空间会炸. 某大佬:lca和fa[lca]减得时候一定已经存在这个节点了,所以放进vector里,合并完之后减掉就好了... 玄 ...

  10. bzoj 5301: [Cqoi2018]异或序列

    蛤?这一年cqoi的题这么水???? 这不就是个sb莫队吗 这样写怕是会被打死,,, 注意\(a_x\ XOR a_{x+1}\ XOR\ ...\ a_{y}=s_{x-1}\ XOR\ s_y\) ...