74HC245/74HCT245

The 74HC245; 74HCT245 is a high-speed Si-gate CMOS device and is
pin compatible with Low-Power Schottky TTL (LSTTL).

The 74HC245; 74HCT245 is an octal transceiver featuring non-inverting 3-state bus 
compatible outputs in both send and receive directions.

The 74HC245; 74HCT245 features an output enable input (OE) for easy cascading
and a send/receive input (DIR) for direction control.

OE controls the outputs so that the buses are effectively isolated.
The 74HC245; 74HCT245 is similar to the 74HC640;
74HCT640 but has true (non-inverting) outputs.

■ Octal bidirectional bus interface
■ Non-inverting 3-state outputs

74LV245

Octal bus transceiver (3-State)

The 74LV245 is a low-voltage Si-gate CMOS device that is pin
and function compatible with 74HC245 and 74HCT245.

The 74LV245 is an octal transceiver with non-inverting 3-state bus
compatible outputs in both send and receive directions.

A send/receive (DIR) input controls direction, and an output enable (OE)
input makes easy cascading possible.

Pin OE controls the outputs so that the buses are effectively isolated.

Wide operating voltage: 1.0 V to 5.5 V
Optimized for low voltage applications: 1.0 V to 3.6 V
Accepts TTL input levels between VCC = 2.7 V and VCC = 3.6 V
Typical output ground bounce < 0.8 V at VCC = 3.3 V and Tamb = 25 °C
Typical HIGH-level output voltage (VOH) undershoot: > 2 V at VCC = 3.3 V and Tamb = 25 °C

74LV245A

The 74LVC245A; 74LVCH245A are 8-bit transceivers featuring non-inverting 3-state bus
compatible outputs in both send and receive directions.
The device features an output enable (OE) input for easy cascading and
a send/receive (DIR) input for direction control.
OE controls the outputs so that the buses are effectively isolated.
Inputs can be driven from either 3.3 V or 5 V devices.
When disabled, up to 5.5 V can be applied to the outputs.
These features allow the use of these devices in mixed 3.3 V and 5 V applications.
The 74LVCH245A bus hold on data inputs eliminates the need for external pull-up
resistors to hold unused inputs.

5 V tolerant inputs/outputs for interfacing with 5 V logic
Wide supply voltage range from 1.2 V to 3.6 V

74LVC4245A

Octal dual supply translating transceiver; 3-state

The 74LVC4245A is an octal dual supply translating transceiver featuring
non-inverting 3-state bus compatible outputs in both send and receive directions.

It is designed to interface between a 3 V and 5 V bus
in a mixed 3 V and 5 V supply environment.

The device features an output enable input (pin OE) for
easy cascading and a send/receive input (pin DIR) for direction control.

Pin OE controls the outputs so that the buses are effectively isolated.
In suspend mode, when VCC(A) is zero, there will be
no current flow from one supply to the other supply.

The A-outputs must be set 3-state and the voltage on the A-bus
must be smaller than Vdiode (typical 0.7 V).

VCC(A) >= VCC(B), except in suspend mode.

5 V tolerant inputs/outputs, for interfacing with 5 V logic
Wide supply voltage range:
3 V bus (VCC(B)): 1.5 V to 3.6 V
5 V bus (VCC(A)): 1.5 V to 5.5 V
CMOS low-power consumption
Direct interface with TTL levels
Inputs accept voltages up to 5.5 V
High-impedance when VCC(A) = 0 V

74LVC8T245

The 74LVC8T245; 74LVCH8T245 are 8-bit dual supply translating transceivers
with 3-state outputs that enable bidirectional level translation.

They feature two data input-output ports (pins An and Bn), a direction control input (DIR),
an output enable input (OE) and dual supply pins (VCC(A) and VCC(B)).

Both VCC(A) and VCC(B) can be supplied at any voltage between 1.2 V and 5.5 V
making the device suitable for translating between any of the low voltage nodes
(1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V).

Pins An, OE and DIR are referenced to VCC(A) and pins Bn are referenced to VCC(B).
A HIGH on DIR allows transmission from An to Bn and
a LOW on DIR allows transmission from Bn to An.

The output enable input (OE) can be used to disable the outputs
so the buses are effectively isolated.

The devices are fully specified for partial power-down applications using IOFF.

The IOFF circuitry disables the output, preventing any damaging backflow current
through the device when it is powered down.

In suspend mode when either VCC(A) or VCC(B) are at GND level,
both A port and B port are in the high-impedance OFF-state.

Active bus hold circuitry in the 74LVCH8T245 holds unused or
floating data inputs at a valid logic level.

Wide supply voltage range:
VCC(A): 1.2 V to 5.5 V
VCC(B): 1.2 V to 5.5 V

74LVC16T245

  • Control Inputs VIH/VIL Levels Are Referenced to VCCA Voltage
  • VCC Isolation Feature - If Either VCC Input Is at GND,
    Both Ports Are in the High-Impedance State
  • Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
  • Fully Configurable Dual-Rail Design Allows Each Port
    to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range

74ALVC164245

16-bit dual supply translating transceiver; 3-state

The 74ALVC164245 is a high-performance, low-power, low-voltage, Si-gate CMOS
device, superior to most advanced CMOS compatible TTL families.
The 74ALVC164245 is a 16-bit (dual octal) dual supply translating transceiver featuring
non-inverting 3-state bus compatible outputs in both send and receive directions. It is
designed to interface between a 3 V and 5 V bus in a mixed 3 V and 5 V supply
environment.
This device can be used as two 8-bit transceivers or one 16-bit transceiver.
The direction control inputs (1DIR and 2DIR) determine the direction of the data flow.
nDIR (active HIGH) enables data from nAn ports to nBn ports. nDIR (active LOW) enables
data from nBn ports to nAn ports. The output enable inputs (1OE and 2OE), when HIGH,
disable both nAn and nBn ports by placing them in a high-impedance OFF-state. Pins
nAn, nOE and nDIR are referenced to VCC(A) and pins nBn are referenced to VCC(B).
In suspend mode, when one of the supply voltages is zero, there will be no current flow
from the non-zero supply towards the zero supply. The nAn-outputs must be set 3-state
and the voltage on the A-bus must be smaller than Vdiode (typical 0.7 V). VCC(B)  VCC(A)
(except in suspend mode).

 5 V tolerant inputs/outputs for interfacing with 5 V logic
 Wide supply voltage range:
 3 V port (VCC(A)): 1.5 V to 3.6 V
 5 V port (VCC(B)): 1.5 V to 5.5 V
 CMOS low power consumption
 Direct interface with TTL levels
 Control inputs voltage range from 2.7 V to 5.5 V
 Inputs accept voltages up to 5.5 V
 High-impedance outputs when VCC(A) or VCC(B) = 0 V

74HC245 74HCT245 74LV245 74LVC245 74LVC4245A 74LVC8T245 74LVC16T245 74ALVC164245的更多相关文章

  1. 74HC245引脚定义 使用方法

    典型的CMOS型三态缓冲门电路,八路信号收发器. 由于单片机或CPU的数据/地址/控制总线端口都有一定的负载能力,如果负载超过其负载能力,一般应加驱动器. 主要应用于大屏显示 引脚定义 DIR:方向控 ...

  2. 5V系统和3.3V系统电平转换

    在设计一个带MCU或者ARM系统电路时候,经常遇见MCU的VCC是3.3V,但是外围电路需要5V.有时候是反过来.虽然现在MCU的IO都声称支持TTL电平,但是我们谁也不想将MCU的IO口直接接上5V ...

  3. AC、HC、AHC、ACT、LS的区别

    http://forum.eet-cn.com/thread!printPreview.jspa?threadID=1200029698&start=0 以245为例,74AC245.74HC ...

  4. MSP430常见问题之LCD 显示驱动类

    Q1:晶体一般都是接32768,然后使用液晶很正常.我打算将晶体接6M的替换32768,那么液晶还能正常显示吗A1:看你所用的LCM 模块时序极限是多少HZ,然后看6M情况下,MSP430去驱动LCM ...

  5. IC芯片

    5.8寸显示屏/LB058WQ1(SD)01LG2 74HC04 0.3NXP10K    74HC138 0.37NXP20K    74HC245 0.52NXP30K    74HC595 明威 ...

  6. 初识DSP

    初识DSP 1.TI DSP的选型主要考虑处理速度.功耗.程序存储器和数据存储器的容量.片内的资源,如定时器的数量.I/O口数量.中断数量.DMA通道数等.DSP的主要供应商有TI,ADI,Motor ...

  7. 基于Verilog HDL 的数字时钟设计

    基于Verilog HDL的数字时钟设计 一.实验内容:     利用FPGA实现数字时钟设计,附带秒表功能及时间设置功能.时间设置由开关S1和S2控制,分别是增和减.开关S3是模式选择:0是正常时钟 ...

  8. 豹哥嵌入式好讲堂:ARM Cortex-M调试过程探析(1)- 4线接口标准(JTAG)

    大家好,我是豹哥,猎豹的豹,犀利哥的哥.今天豹哥给大家讲的是嵌入式调试里的接口标准JTAG. 在结束<ARM Cortex-M开发文件详解>系列文章之后,豹哥修整了一小段时间,但是讲课的心 ...

  9. 学习笔记——单片机简介 & 点亮LED & 流水灯 & 电路基础【更新Ing】

    视频地址:https://www.bilibili.com/video/av10765766 超详细!!!!!! 单片机内部三大资源 [资源:单片机可提供使用的东西] FLASH 可以重复擦写 断电后 ...

随机推荐

  1. Java基础82 jsp中的EL表达式(网页知识)

    1.EL表达式的作用 EL表达式的作用:向浏览器输出域对象中的变量值或者表达式计算结果.语法:${变量或者表达式} 注: Jsp的核心语法:jsp的表达式<%= %>和jsp的脚本< ...

  2. sql server 2005/2008R2 报“红叉”错,即“不允许所请求的注册表访问权”的错误

    一.使用报错展示:           1.红叉错: 2.报错文字信息: 解决办法:可以鼠标右键,以管理员的身份运行即可,但这治标不治本,按如下方法可以彻底解决:把“以管理员身份运行此程序”勾上,即可

  3. R语言学习笔记:choose、factorial、combn排列组合函数

    一.总结 组合数:choose(n,k) —— 从n个中选出k个 阶乘:factorial(k) —— k! 排列数:choose(n,k) * factorial(k) 幂:^ 余数:%% 整数商: ...

  4. Java字符串常见实例与函数

    字符串比较 字符串函数 compareTo (string) ,compareToIgnoreCase(String) 及 compareTo(object string) 来比较两个字符串,并返回字 ...

  5. 通过构造系统服务分发实现拦截&过滤 (仿360游戏保险箱)

    想写这个程序主要是因为看了KSSD的一篇帖子,http://bbs.pediy.com/showthread.php?t=108378 讲 的是360保险箱保护游戏账号的原理,实际上就是对各种请求的拦 ...

  6. 浅谈malloc/free和new/delete 的区别

    malloc和new的区别 malloc是库函数,需要包头文件才能成功运行编译:new是操作符(C++中的关键字),需要在C++的环境下使用. malloc既可以在C语言中使用也可以在C++中使用,n ...

  7. Asp.net mvc 实时生成缩率图到硬盘

    之前对于缩率图的处理是在图片上传到服务器之后,同步生成两张不同尺寸的缩率供前端调用,刚开始还能满足需求,慢慢的随着前端展示的多样化,缩率图已不能前端展示的需求,所以考虑做一个实时生成图片缩率图服务. ...

  8. Smart Pointer 智能指针

    P76 参考:http://www.cnblogs.com/lanxuezaipiao/p/4132096.html http://blog.csdn.net/hackbuteer1/article/ ...

  9. Dijkstra-傻子也能看懂的迪杰斯特拉算法(转)

    本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图中的1号顶点到2.3.4.5.6号顶点的最短路径.           与Floyd-Warshall算法一样 ...

  10. java的组合和继承

    其实我第一次学习java 的时候根本没有听说过组合这个名词,老师也更没有讲解过,我一直以为是我自己落掉了什么知识点,其实不是的,组合这个名词暂且把它定义为一个思维性的东西吧,相信读者都接触过了,但是并 ...