题目描述

判定输入的数是不是质数。

输入格式

若干行,一行一个数 x。

行数不超过 1.5×104​​。

输出格式

对于输入的每一行,如果 x 是质数输出一行 Y,否则输出一行 N。

样例

样例输入

1
2
6
9
666623333

样例输出

N
Y
N
N
Y

数据范围与提示

1≤x≤1018​​。

欢迎hack(如果你不是管理员,可以在题目讨论区发帖)。

Solution:

  本题Miller-rabin模板题。

  Miller-rabin其实是个很简单的算法,用来快速判断一个数是否为素数。

  前置技能:二次探测定理。

    若$a^2\equiv 1\mod p$且$p$为素数,则$a\equiv \pm 1\mod p$。

    证明:$\because a^2\equiv 1\mod p$

              $\therefore (a+1)(a-1)\equiv 0 \mod p$

        又$p$为素数

        $\therefore a=1$或$a=p-1$

  我们由费马小定理,若$p$为素数,则$a^{p-1}\equiv 1 \mod p$,那么对于一个需要判断是否为素数的数$x$:

    1、$x$必须是个非$1$的奇数。

    2、令$x=2^k*c+1$($c$为奇数),选择随机数$a$,使其满足所有$i<r$,都有$a^{2^i*c}\;mod\;p=p-1\;or\;1$。

  然后就是模拟上述过程,多选几个随机数,若都能通过测试就是素数啦。

  一般的话,随机选取4个数$2,3,5,7$,则在$2.5*10^{13}$以内唯一一个判断失误的数为$3215031751$。

  然后细节就是当前数不能是所选取的随机数的倍数,否则会误判。

代码:

/*Code by 520 -- 9.10*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int cnt=,tab[]={,,,};
ll n,m; ll Mul(ll x,ll y,ll mod){
ll ans=(x*y-(ll)((long double)x/mod*y+0.5)*mod);
return ans<?ans+mod:ans;
} ll Exp(ll x,ll y,ll mod){
ll ans=;
while(y){
if(y&) ans=Mul(ans,x,mod);
y>>=;
x=Mul(x,x,mod);
}
return ans;
} bool Miller_Rabin(ll &n){
if(n==||n==||n==||n==||n==||n==) return ;
if(n==||n%==||n%==||n%==||n%==||n%==||n%==) return ;
For(i,,cnt) {
RE ll d=n-;
while(!(d&)) d>>=;
RE ll s=Exp(tab[i],d,n);
while(s!=&&s!=n-&&d!=n-) d<<=,s=Mul(s,s,n);
if(s!=n-&&!(d&)) return ;
}
return ;
} int main(){
while(scanf("%lld",&n)!=EOF) putchar(Miller_Rabin(n)?'Y':'N'),putchar('\n');
return ;
}

LOJ #143. 质数判定的更多相关文章

  1. Loj#143-[模板]质数判定【Miller-Rabin】

    正题 题目链接:https://loj.ac/p/143 题目大意 给出一个数\(p\),让你判定是否为质数. 解题思路 \(Miller-Rabin\)是一种基于费马小定理和二次探测定理的具有较高正 ...

  2. LibreOJ#143 质数判定 [Miller_Rabin]

    题目传送门 质数判定 题目描述 判定输入的数是不是质数. 输入格式 若干行,一行一个数 x. 行数不超过 $1.5\times 10^4$ 输出格式 对于输入的每一行,如果 x是质数输出一行 Y,否则 ...

  3. [学习笔记] Miller-Rabin质数测试 & Pollard-Rho质因数分解

    目录 Miller-Rabin质数测试 & Pollard-Rho质因数分解 Miller-Rabin质数测试 一些依赖的定理 实现以及正确率 Pollard-Rho质因数分解 生日悖论与生日 ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. RSA简介(三)——寻找质数

    要生成RSA的密钥,第一步就是要寻找质数,本节专讲如何寻找质数. 我们的质数(又称素数).合数一般是对正整数来讲,质数就是只有1和本身两个的正整数,合数至少有3个约数,而1既不是合数也不是质数. 质数 ...

  6. 博客索引and题目列表

    目录 笔记整理 计划 要学的东西 缺省源 要做的题 搜索 高斯消元 矩阵 排列组合 2019.7.9 2019.7.10 kmp ac自动机 2019.7.11 2019.7.15 笔记整理 1.同余 ...

  7. Java基础常见英语词汇

    Java基础常见英语词汇(共70个) ['ɔbdʒekt] ['ɔ:rientid]导向的                             ['prəʊɡræmɪŋ]编程 OO: object ...

  8. 跨越千年的RSA算法

    转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  9. computer English

    算法常用术语中英对照Data Structures 基本数据结构Dictionaries 字典PriorityQueues 堆Graph Data Structures 图Set Data Struc ...

随机推荐

  1. 「专题训练」Collecting Bugs(POJ-2096)

    题意与分析 题意大致是这样的:给定一个\(n\times s\)的矩阵,每次可以随机的在这个矩阵内给一个格子染色(染过色的仍然可能被选中),问每一行和每一列都有格子被染色的次数的期望. 这题如果从概率 ...

  2. Kickstart Round H 2018

    打了ks好久都没有更新 诶,自己的粗心真的是没救了,A题大数据都能错 A #include <iostream> #include <cstdio> #include < ...

  3. Kickstart Round G 2018

    第一次打codejam....惨的一比,才A1.5题,感觉自己最近状态渣到姥姥家了,赶紧练练 A 模拟,注意0的问题 #include <iostream> #include <cs ...

  4. Java 的JAR包、EAR包、WAR包区别

    一.WAR包 WAR(Web Archive file) 网络应用程序文件,是与平台无关的文件格式,它允许将许多文件组合成一个压缩文件.WAR专用于Web方面.大部分的JAVA WEB工程,都是打成W ...

  5. Hyperledger Fabric服务器配置及修改Docker容器卷宗存储根目录/位置

    Hyperledger Fabric节点服务器对存储空间的消耗还是比较大的,在我实际生产体验的过程中,每一条请求数据大概仅2K左右,但实际占用空间远不止这点,每个节点都会对Block及链进行保存维护, ...

  6. QRCode 二维码

    一.生成二维码 1.二维码就是绘制成黑白相间的图片,所谓的黑白相间就是代表0和1 ,二维码大约可以容纳500多个中文,所以用途之广显而易见. 所需的jar包  http://pan.baidu.com ...

  7. 高可用OpenStack(Queen版)集群-11.Neutron计算节点

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  8. 使用Python 统计nginx日志前十ip访问量并以柱状图显示

    脚本内容: import matplotlib.pyplot as plt # nginx_file = '10.6.11.91_access.log-2018-12-27' ip = {} #筛选n ...

  9. 实验五Java网络编程及安全——20135337朱荟潼

    实验五 Java网络编程及安全 结对伙伴:20135317韩玉琪(负责服务器方)http://www.cnblogs.com/hyq20135317/p/4567241.html 实验内容 1.掌握S ...

  10. Java script 中的面向对象1

    Java script 中的面向对象 对象 对象是Javascript的基本数据类型,对象是一种复合值,将很多的键值对聚合在一起使用.对象可看做是属性的无序集合,每个属性都是一个名/值对.属性名其实是 ...