BZOJ1135:[POI2009]Lyz(线段树,Hall定理)
Description
初始时滑冰俱乐部有1到n号的溜冰鞋各k双。已知x号脚的人可以穿x到x+d的溜冰鞋。 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人。xi为负,则代表走了这么多人。 对于每次操作,输出溜冰鞋是否足够。
Input
n m k d ( 1≤n≤200,000 , 1≤m≤500,000 , 1≤k≤10^9 , 0≤d≤n ) ri xi ( 1≤i≤m, 1≤ri≤n-d , |xi|≤10^9 )
Output
对于每个操作,输出一行,TAK表示够 NIE表示不够。
Sample Input
1 3
2 3
3 3
2 -1
Sample Output
TAK
NIE
TAK
Solution
这还是第一次听说$Hall$定理……
$Hall$定理:设一个二分图左边有$n$个点,右边有$m$个点,则左边$n$个点能完全匹配的充要条件是:对于$1<=i<=n$,左面任意$i$个点,都至少有$i$个右面的点与它相连。
那么考虑把鞋码相同的人放到一起,设鞋码为$i$的有$a[i]$个人。
贪心的想这个题,肯定是选二分图左边一段连续区间才更容易匹配无解。
所以由$Hall$定理得,不合法的话是存在一组$l,r$,满足
$\sum_{i=l}^{r} a[i]>(r-l+1+d)*k$。
把右边的$(r-l+1)*k$移到左边,并且设$c[i]=a[i]-k$,则有
$\sum_{i=l}^{r} c[i]>d*k$。
由于$d*k$是定值,所以我们只需要用一个维护最大子段和的线段树就可以判断是否合法了。
Code
#include<iostream>
#include<cstdio>
#define N (200009)
#define LL long long
using namespace std; struct Sgt{LL lmax,rmax,max,val;}Segt[N<<];
LL n,m,k,d,r,x,a[N]; void Pushup(LL now)
{
LL ls=now<<,rs=now<<|;
Segt[now].val=Segt[ls].val+Segt[rs].val;
Segt[now].lmax=max(Segt[ls].lmax,Segt[ls].val+Segt[rs].lmax);
Segt[now].rmax=max(Segt[rs].rmax,Segt[rs].val+Segt[ls].rmax);
Segt[now].max=max(max(Segt[ls].max,Segt[rs].max),Segt[ls].rmax+Segt[rs].lmax);
} void Update(LL now,LL l,LL r,LL x,LL v)
{
if (l==r)
{
Segt[now].val+=v; Segt[now].max+=v;
Segt[now].lmax+=v; Segt[now].rmax+=v;
return;
}
LL mid=(l+r)>>;
if (x<=mid) Update(now<<,l,mid,x,v);
else Update(now<<|,mid+,r,x,v);
Pushup(now);
} int main()
{
scanf("%lld%lld%lld%lld",&n,&m,&k,&d);;
for (int i=; i<=n; ++i) Update(,,n,i,-k);
for (int i=; i<=m; ++i)
{
scanf("%lld%lld",&r,&x);
Update(,,n,r,x);
puts(Segt[].max>k*d?"NIE":"TAK");
}
}
BZOJ1135:[POI2009]Lyz(线段树,Hall定理)的更多相关文章
- bzoj 1135 [POI2009]Lyz 线段树+hall定理
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 573 Solved: 280[Submit][Status][ ...
- 【BZOJ1135】[POI2009]Lyz 线段树
[BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...
- 【BZOJ2138】stone(线段树+hall定理)
传送门 题意: 现在有\(n\)堆石子,每堆石子有\(a_i\)个. 之后会有\(m\)次,每次选择\([l,r]\)的石子堆中的石子扔\(k\)个,若不足,则尽量扔. 现在输出\(1\)~\(m\) ...
- 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)
题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...
- BZOJ1135: [POI2009]Lyz
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 264 Solved: 106[Submit][Status] ...
- BZOJ 1135 P3488 LYZ-Ice Skates 线段树+Hall
https://www.luogu.org/problem/P3488 根据Hall定理 左边任意一个区间L-R a[i]的和sum[l~r] 都要<= (R-L+1+d)*K 把(R-L+1) ...
- 【题解】 bzoj3693: 圆桌会议 (线段树+霍尔定理)
bzoj3693 Solution: 显然我们可以把人和位置抽象成点,就成了一个二分图,然后就可以用霍尔定理判断是否能有解 一开始我随便YY了一个\(check\)的方法:就是每次向后一组,我们就把那 ...
- [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]
题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...
- [bzoj1135][Ceoi2011]Match_线段树
[Ceoi2011]Match 题目大意:初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负, ...
随机推荐
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- Vue 基本指令和html常用标签结合使用综合案例(含代码)
最近项目中要开发一个OA审批:里边涉及到流程跳转(流程较多),具体方案有:直接下一步,选择参与人或者选择某一个流程之后再选择参与人: 我们前端是APiCloud开发,这里我主要使用Vue来实现,把实现 ...
- 用python写桌面天气预报,自己的学习曲线。
自从接触python,就被他优雅而简洁的代码所吸引. 举个例子: arr , , , , , , , , , , , , , ] ] 如果用其他语言来写的吗,不会这么简洁,美观. python还有 ...
- 移动端实现上拉加载更多(使用dropload.js vs js)
做下笔记,:移动端实现上拉加载更多,其实是数据的分段加载,在这里为了做测试我写了几个json文件作为分段数据: 方式一:使用dropload.js; 配置好相关参数及回调函数就可使用:代码如下 var ...
- 递归方程T(n)=aT(n/b)+f(n)之通用解法
,b>1为常数,f(n)为函数,T(n)=aT(n/b)+f(n)为非负数,令x=logba: 1. f(n)=o(nx-e),e>0,那么T(n)=O(nx). 2. ...
- Flutter自定义标题栏之处理状态栏高度
App在很多情况下由于各种需求需要自定义标题栏,而在能够构建Android和IOS应用的Flutter中,如果不在Scaffold中使用AppBar会发现默认是沉浸式. 猜想:我们使用自定义标题栏好像 ...
- android--Git上克隆项目遇到的坑
直接上图,首先你得有你得GitHub项目地址,如下: 然后打开android studio,选择新建项目时从Git上克隆: 点击clone等待完成,新窗口打开. 打开之后可能.或许.大概.也许会出现下 ...
- mysql navicat 及命令行 创建、删除数据库
1.命令行创建数据库 create database mybatis default character set utf8 collate utf8_general_ci; drop database ...
- owin Claims-based认证登录实现
public override async Task GrantResourceOwnerCredentials(OAuthGrantResourceOwnerCredentialsContext c ...
- MQTT介绍(1)简单介绍
MQTT目录: MQTT简单介绍 window安装MQTT服务器和client java模拟MQTT的发布,订阅 MQTT: MQTT(Message Queuing Telemetry Transp ...