题目链接

bzoj4668: 冷战

题解

按秩合并并查集,每次增长都是小集合倍数的两倍以上,层数不超过logn

查询路径最大值

LCT同解

代码

#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f; }
int n,m;
const int maxn = 5000007;
int cnt = 0 ,fa[maxn],deep[maxn],siz[maxn],v[maxn];
int find(int x) {
if(fa[x] != x) {
int f = find(fa[x]);
deep[x] = deep[fa[x]] + 1;
return f;
} else return x;
}
void Union(int x,int y,int C) {
int f1 = find(x),f2 = find(y);
if(f1 == f2) return ;
if(siz[f1] > siz[f2]) fa[f2] = f1,v[f2] = C,siz[f1] += siz[f2];
else fa[f1] = f2,v[f1] = C,siz[f2] += siz[f1];
}
int query(int x,int y) {
int f1 = find(x),f2 = find(y);
if(f1 != f2)return 0;
int ret = 0 ;
for(;x != y;) {
if(deep[x] < deep[y]) swap(x,y);
ret = max(ret,v[x]),x = fa[x];
} return ret;
}
int main() {
n = read(),m = read();
for(int i = 1;i <= n;++ i) fa[i] = i,siz[i] = 1;
int ans = 0;
for(int op,u,v,i = 1;i <= m;++ i) {
op = read();u = read() ^ ans,v = read() ^ ans;
if(!op) {
Union(u,v,++ cnt);
} else printf("%d\n",ans = query(u,v));
}
return 0;
}


bzoj4668: 冷战 并查集按秩合并的更多相关文章

  1. BZOJ4668: 冷战 [并查集 按秩合并]

    BZOJ4668: 冷战 题意: 给定 n 个点的图.动态的往图中加边,并且询问某两个点最早什 么时候联通,强制在线. 还可以这样乱搞 并查集按秩合并的好处: 深度不会超过\(O(\log n)\) ...

  2. 【bzoj4668】冷战 并查集按秩合并+朴素LCA

    题目描述 1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表“铁幕演说”,正式拉开了冷战序幕. 美国和苏联同为世界上的“超级大国”,为了争夺世界霸权,两国及其盟国展开了数十年的斗争 ...

  3. 【BZOJ-4668】冷战 并查集 + 按秩合并 + 乱搞

    4668: 冷战 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 37  Solved: 24[Submit][Status][Discuss] Des ...

  4. bzoj 4668 冷战 —— 并查集按秩合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4668 按秩合并维护并查集的树结构,然后暴力找路径上的最大边权即可. 代码如下: #inclu ...

  5. Dash Speed【好题,分治,并查集按秩合并】

    Dash Speed Online Judge:NOIP2016十联测,Claris#2 T3 Label:好题,分治,并查集按秩合并,LCA 题目描述 比特山是比特镇的飙车圣地.在比特山上一共有 n ...

  6. BZOJ4668: 冷战 (并查集 + LCA)

    题意:动态给点连边 询问两个点之间最早是在第几个操作连起来的 题解:因为并查集按秩合并 秩最高是logn的 所以我们可以考虑把秩看作深度 跑LCA #include <bits/stdc++.h ...

  7. [BZOJ4668]冷战(并查集)

    比较自然的思路是,由于需要记录连通块合并时的信息,所以需要建出Kruskal重构树. 需要用LCT维护,支持加点和在线LCA操作. 不妨考虑在并查集合并的同时记录信息,pre[x]表示x与它的父亲相连 ...

  8. BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并

    原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html 题目传送门 - BZOJ4025 题意 有$n$个点,有$m$条边.有$T$个时间段.其中 ...

  9. 石头剪刀布(2019Wannafly winter camp day3 i) 带权并查集+按秩合并 好题

    题目传送门 思路: 按照题意描述,所有y挑战x的关系最后会形成一棵树的结构,n个人的总方案数是 3n 种,假设一个人被挑战(主场作战)a次,挑战别人(客场)b次,那么这个人存活到最后的方案数就是3n* ...

随机推荐

  1. Android笔记之开机自启

    有时候需要应用具有开机自启的能力,或者更常见的场景是开机时悄悄在后台启动一个Service. 关键点: 1. Android系统在开机的时候会发送一条广播消息,只需要接收这条广播消息即可,不过需要注意 ...

  2. XSS姿势——文件上传XSS

    XSS姿势--文件上传XSS 原文链接:http://brutelogic.com.br/blog/ 0x01 简单介绍 一个文件上传点是执行XSS应用程序的绝佳机会.很多网站都有用户权限上传个人资料 ...

  3. 关于注入抽象类报could not autowire field的问题

    昨天工作中遇到了一个很奇葩的问题,之前一直都没考虑过抽象类这块,一直用的注入接口实现类: 先看下错误: 因为在类中注入了一个抽象类,之前只有一个继承子类,所以没问题,这里要说一下抽象类的实例化: 抽象 ...

  4. 【FCS NOI2018】福建省冬摸鱼笔记 day1

    省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...

  5. linux下使用indent整理代码(代码格式化)【转】

    转自:https://blog.csdn.net/jiangjingui2011/article/details/7197069 常用的设置: indent -npro -kr -i8 -ts8 -s ...

  6. 华硕笔记本U盘重装系统

    ESC启动把Secure Boot改为Disabled,Launch CSM改为Enabled,然后重新选择不带UEFI字样的U盘启动项.然后就可以找到U盘进入PE

  7. Monkeyrunner的相关总结

    1.1  monkeyrunner API 主要包括三个模块1.MonkeyRunner:这个类提供了用于连接monkeyrunner和设备或模拟器的方法,它还提供了用于创建用户界面显示提供了方法.2 ...

  8. 006_Mac下sublime text 的“package control”安装,sublimepackage

    Mac下sublime text 的“package control”安装,sublimepackage 小伙伴们好,我根据昨晚的经历写一个小总结:关于“Mac下sublime text 的“pack ...

  9. 使用mui框架打开页面的几种不同方式

    1.创建子页面: list.html就是index.html的子页面,创建代码比较简单,如下: mui.init({ subpages: [{ url: 'list.html', //子页面HTML地 ...

  10. linux内核之accept实现

    用户态对accept的标准用法: if ((client_fd = accept(sockfd, (struct sockaddr *)&remote_addr, &sin_size) ...