Link:

传送门

Solution:

记录一下推$\sum_{i=0}^k C_n^i$的过程:

其实就是将相同的$i/p$合起来算,这样每个里面都是一个可以预处理的子问题

接下来递归下去算即可

Tip:推式子时尽量化出与模数相关的量方便预处理

Code:

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
#define pb push_back
typedef double db;
typedef long long ll;
typedef pair<int,int> P;
int T;const int MOD=;
ll C[MOD+][MOD+],sum[MOD+][MOD+]; ll Lucas(ll x,ll y)
{
if(y==) return ;
return Lucas(x/MOD,y/MOD)*C[x%MOD][y%MOD]%MOD;
}
ll cal(ll n,ll k)
{
if (k<) return ;
return (cal(n/MOD,k/MOD-)*sum[n%MOD][MOD-]+Lucas(n/MOD,k/MOD)*sum[n%MOD][k%MOD])%MOD;
}
int main()
{
C[][]=;sum[][]=;
for (int i=;i<MOD;i++) sum[][i]=;
for (int i=;i<MOD;i++)
{
C[i][]=sum[i][]=;
for (int j=;j<=i;j++) C[i][j]=(C[i-][j-]+C[i-][j])%MOD;
for (int j=;j<MOD;j++) sum[i][j]=(sum[i][j-]+C[i][j])%MOD;
}
scanf("%d",&T);
while (T--)
{
ll n,k;
scanf("%lld%lld",&n,&k);
printf("%lld\n",cal(n,k));
}
return ;
}

[BZOJ 4591] 超能粒子炮-改的更多相关文章

  1. bzoj 4591 超能粒子炮·改 - Lucas

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  3. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  4. BZOJ 4591 【SHOI2015】 超能粒子炮·改

    题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...

  5. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  8. loj#2038. 「SHOI2015」超能粒子炮・改

    题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<c ...

  9. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

随机推荐

  1. spring-boot-全局异常

    Spring Boot默认的异常处理机制 默认情况下,Spring Boot为两种情况提供了不同的响应方式. 一种是浏览器客户端请求一个不存在的页面或服务端处理发生异常时,一般情况下浏览器默认发送的请 ...

  2. 配置子目录Web.config使其消除继承,iis7.0设置路由

    iis7.0设置路由 ,url转向,伪静态 <system.webServer>      <modules runAllManagedModulesForAllRequests=& ...

  3. springboot集成mybatis环境搭建以及实现快速开发微服务商品模块基本的增删改查!

    之前学习了springboot和mybatis3的一些新特性,初步体会了springboot的强大(真的好快,,,,,),最近趁着复习,参考着以前学习的教程,动手写了一个springboot实战的小例 ...

  4. Python标准库笔记(10) — itertools模块

    itertools 用于更高效地创建迭代器的函数工具. itertools 提供的功能受Clojure,Haskell,APL和SML等函数式编程语言的类似功能的启发.它们的目的是快速有效地使用内存, ...

  5. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂

    题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...

  6. Jquery获取radio单选按钮的value与后面的文字

    一组单选按钮如图: <input name="classId" value="8afa94f45ba3e2c1015ba3fac6c00000" type ...

  7. thinkphp模型创建

  8. [java笔记]动态数组

    private int count;//计数器 private int ary[] = new int [3]; if(count >= ary.length){ //数组动态扩展 int ne ...

  9. 用命令对sql进行备份

    利用T-SQL语句,实现数据库的备份与还原的功能 体现了SQL Server中的四个知识点: 1. 获取SQL Server服务器上的默认目录 2. 备份SQL语句的使用 3. 恢复SQL语句的使用, ...

  10. 题解-python-CodeForces 1A

    A. Theatre Square time limit per test 2 seconds memory limit per test 64 megabytes input standard in ...