/**************************************************************
Problem: 1337
User: idy002
Language: C++
Result: Accepted
Time:4 ms
Memory:2372 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm>
#define line(a,b) ((b)-(a))
#define eps 1e-10
#define N 100010
using namespace std; int sg( double x ) { return (x>-eps)-(x<eps); }
struct Vector {
double x, y;
Vector( double x=, double y= ):x(x),y(y){}
Vector operator+( const Vector &b ) const { return Vector(x+b.x,y+b.y); }
Vector operator-( const Vector &b ) const { return Vector(x-b.x,y-b.y); }
Vector operator*( double b ) const { return Vector(x*b,y*b); }
Vector operator/( double b ) const { return Vector(x/b,y/b); }
double operator^( const Vector &b ) const { return x*b.y-y*b.x; }
double len() { return sqrt(x*x+y*y); }
Vector nor() { return Vector(-y,x); }
};
typedef Vector Point;
Point inter( Point p, Vector u, Point q, Vector v ) {
return p+u*((line(p,q)^v)/(u^v));
}
struct Circle {
Point o;
double r;
Circle(){}
Circle( Point a ):o(a),r(){}
Circle( Point a, Point b ) {
o = (a+b)/;
r = (a-b).len()/;
}
Circle( Point a, Point b, Point c ) { // ab^bc != 0
Point p=(a+b)/, q=(b+c)/;
Vector u=(a-b).nor(), v=(b-c).nor();
o = inter(p,u,q,v);
r = (o-a).len();
}
bool contain( Point a ) {
return sg( (a-o).len() - r ) <= ;
}
}; int n;
Point pts[N]; int main() {
scanf( "%d", &n );
for( int i=; i<=n; i++ ) {
double x, y;
scanf( "%lf%lf", &x, &y );
pts[i] = Point(x,y);
}
random_shuffle( pts+, pts++n );
Circle c = Circle(pts[]);
for( int i=; i<=n; i++ ) {
if( c.contain(pts[i]) ) continue;
c = Circle(pts[i]);
for( int j=; j<i; j++ ) {
if( c.contain(pts[j]) ) continue;
c = Circle(pts[i],pts[j]);
for( int k=; k<j; k++ ) {
if( c.contain(pts[k]) ) continue;
c = Circle(pts[i],pts[j],pts[k]);
}
}
}
printf( "%.3lf\n", c.r );
}

题解见bzoj 1336

bzoj 1337 最小圆覆盖的更多相关文章

  1. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  2. bzoj 1336 最小圆覆盖

    最小圆覆盖 问题:给定平面上的一个点集,求半径最小的一个圆,使得点集中的点都在其内部或上面. 随机增量算法: 定义:点集A的最小圆覆盖是Circle(A) 定理:如果Circle(A)=C1,且a不被 ...

  3. bzoj2823: [AHOI2012]信号塔&&1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖

    首先我写了个凸包就溜了 这是最小圆覆盖问题,今晚学了一下 先随机化点,一个个加入 假设当前圆心为o,半径为r,加入的点为i 若i不在圆里面,令圆心为i,半径为0 再重新从1~i-1不停找j不在圆里面, ...

  4. BZOJ 1336&1337最小圆覆盖

    思路: http://blog.csdn.net/commonc/article/details/52291822 (照着算法步骤写--) 已知三点共圆 求圆心的时候 就设一下圆心坐标(x,y) 解个 ...

  5. 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573   ...

  6. 2018.07.04 BZOJ1336&&1337: Balkan2002Alien最小圆覆盖

    1336: [Balkan2002]Alien最小圆覆盖 1337: 最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special Judge Des ...

  7. Bzoj 1336&1337 Alien最小圆覆盖

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 1473  ...

  8. [BZOJ 3564] [SHOI2014] 信号增幅仪 【最小圆覆盖】

    题目链接:BZOJ - 3564 题目分析 求最小椭圆覆盖,题目给定了椭圆的长轴与 x 轴正方向的夹角,给定了椭圆长轴与短轴的比值. 那么先将所有点旋转一个角度,使椭圆长轴与 x 轴平行,再将所有点的 ...

  9. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

随机推荐

  1. 【技巧总结】Penetration Test Engineer[3]-Web-Security(SQL注入、XXS、代码注入、命令执行、变量覆盖、XSS)

    3.Web安全基础 3.1.HTTP协议 1)TCP/IP协议-HTTP 应用层:HTTP.FTP.TELNET.DNS.POP3 传输层:TCP.UDP 网络层:IP.ICMP.ARP 2)常用方法 ...

  2. 八、springboot整合redis

    整合Redis 一. 注解方式实现添加缓存 1.在pom.xml加入依赖 <!-- 配置使用redis启动器 --> <dependency> <groupId>o ...

  3. github 优秀的开源项目

    https://github.com/wlcaption/AndroidMarket---- 这是手机应用商店,包含应用的下载,用户中心等内容 https://github.com/wlcaption ...

  4. java基础79 会话管理(Cookie技术、Session技术)

    1.概念     会话管理:管理浏览器和服务器之间会话过程中产生的会话数据.    Cookie技术:会话数据保存到浏览器客户端.[存 编号/标记(id)]    Session技术:会话技术会保存到 ...

  5. java基础43 IO流技术(输入字节流/缓冲输入字节流)

    通过File对象可以读取文件或者文件夹的属性数据,如果要读取文件的内容数据,那么我们就要使用IO技术. 一.输入字节流 输入字节流的体系:  -------| InputStream:所有输入字节流的 ...

  6. 2016-2017-2 20155309南皓芯java第四周学习总结

    教材内容总结 这次我们学习的还是两章的内容,学习任务量跟上次比的话大体上来讲是差不多的. 继承与多态 继承 继承也符合DRY(Don't Repeat Yourself)原则 Role role1 = ...

  7. 定制Eclipse

    转载自http://chriszz.sinaapp.com 一般从Eclipse官网eclipse.org下载的,都是打包好的版本,比如标准版.jee版.java版.c++版.php版.测试版等.有时 ...

  8. (使用通过混淆+自己第三方保留成功混淆)AndroidStudio 混淆打包

    原文:https://blog.csdn.net/mazhidong/article/details/64820838 AndroidStudio中的项目可以用compile的形式引入github上的 ...

  9. jquery获取浏览器宽高

    满足获取各种高的需求 $(document).ready(function() { alert($(window).height()); //浏览器时下窗口可视区域高度 alert($(documen ...

  10. JS学习笔记(二)变量、作用域及内存问题

    一.基本类型和引用类型的值 变量可能包含两种不同数据类型的值:基本类型值和引用类型值. 基本类型值:简单的数据段. 引用类型值:可能由多个值构成的对象. 当将一个值赋给变量时,解析器必须确定这个值是基 ...