https://www.lydsy.com/JudgeOnline/problem.php?id=2115

每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值。

那么把全部的环丢到线性基里基本操作就可以了。。

https://blog.csdn.net/qaq__qaq/article/details/53812883 这个博客非常好

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define LL long long
const int maxn=;
int n,m;
struct nod{
int y,next;LL v;
}e[maxn*];
int head[maxn]={},tot=;
LL b[]={},c[]={},d[maxn]={},val[maxn*]={},cnt=,tem=;
bool vis[maxn]={};
void init(int x,int y,LL v){
e[++tot].y=y;e[tot].v=v;e[tot].next=head[x];head[x]=tot;
}
void dfs(int x){
vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(!vis[e[i].y]){
d[e[i].y]=d[x]^e[i].v;
dfs(e[i].y);
}
else val[++cnt]=d[e[i].y]^d[x]^e[i].v;
}
}
void getit(LL x){
for(int i=;i>;i--){
if(x&c[i]){
if(!b[i]){b[i]=x;break;}
x^=b[i];
}
}
}
int main(){
int x,y;LL z;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%lld",&x,&y,&z);
init(x,y,z);init(y,x,z);
}
dfs();c[]=;
for(int i=;i<=;i++)c[i]=c[i-]*;
for(int i=;i<=cnt;i++){getit(val[i]);}
LL ans=d[n];
for(int i=;i>;i--)ans=max(ans,ans^b[i]);
printf("%lld\n",ans);
return ;
}

BZOJ 2115: [Wc2011] Xor 线性基 dfs的更多相关文章

  1. BZOJ.2115.[WC2011]Xor(线性基)

    题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Soluti ...

  2. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  3. BZOJ 2115: [Wc2011] Xor DFS + 线性基

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...

  4. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  5. BZOJ 2115: [Wc2011] Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Stat ...

  6. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  7. bzoj 2115: [Wc2011] Xor【线性基+dfs】

    -老是想到最长路上 其实可以这样:把每个环的xor和都存起来,然后任选一条1到n的路径的xor和ans,答案就是这个ans在环的线性基上跑贪心. 为什么是对的--因为可以重边而且是无相连通的,并且对于 ...

  8. bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基

    题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的 ...

  9. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

随机推荐

  1. javaScript书写规范

    命名规范. 常量名    全部大写并单词间用下划线分隔    如:CSS_BTN_CLOSE.TXT_LOADING对象的属性或方法名    小驼峰式(little camel-case)    如: ...

  2. Cloud Lab: 泰晓实验云台【转】

    转自:http://tinylab.org/cloud-lab/ 可快速构建的计算机课程在线实验平台 由 Wu Zhangjin 创建于 2017/10/06 评论 打赏 项目描述 泰晓实验云台 项目 ...

  3. nginx配置location总结及rewrite规则写法【转】

    转自 nginx配置location总结及rewrite规则写法 | Sean's Noteshttp://seanlook.com/2015/05/17/nginx-location-rewrite ...

  4. Asp.Net使用百度编辑器(ueditor)

    1.  1.4.3以上版本将不再承诺支持ie6/ie7. 2.如果是aspx 需要加上  ValidateRequest="false" 3.Web.config <syst ...

  5. Gradle详解

    一.脚本文件(build.gradle)  项目与脚本文件 当我们执行gradle命令的时候,Gradle会在你执行命令的目录下寻找一个名为build.gradle的文件,这个文件就是Gradle的脚 ...

  6. 20 Organizing Go code 组织go代码

    Organizing Go code 16 August 2012 Introduction Go code is organized differently to that of other lan ...

  7. Elasticsearch零停机时间更新索引配置或迁移索引

    本文介绍Elasticsearch零宕机时间更新索引配置映射内容的方法,包括字段类型.分词器.分片数等.方法原理就是,利用别名机制,给索引配置别名,所有应用程序都通过别名访问索引.重建索引,通过索引原 ...

  8. bzoj 4034(DFS序+线段树)

    这个题多了一个操作难度直线上升,看完题解才会写 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 ...

  9. CVE-2012-1876Microsoft Internet Explorer Col元素远程代码执行漏洞分析

    Microsoft Internet Explorer是微软Windows操作系统中默认捆绑的WEB浏览器.         Microsoft Internet Explorer 6至9版本中存在漏 ...

  10. Elasticsearch安全问题

    本节内容: 背景 修改默认的 Elasticsearch 集群名称 不要暴露 Elasticsearch 在公网上 不要以 root 身份运行 Elasticsearch 定期对 Elasticsea ...