BZOJ 2115: [Wc2011] Xor 线性基 dfs
https://www.lydsy.com/JudgeOnline/problem.php?id=2115
每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值。
那么把全部的环丢到线性基里基本操作就可以了。。
https://blog.csdn.net/qaq__qaq/article/details/53812883 这个博客非常好
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define LL long long
const int maxn=;
int n,m;
struct nod{
int y,next;LL v;
}e[maxn*];
int head[maxn]={},tot=;
LL b[]={},c[]={},d[maxn]={},val[maxn*]={},cnt=,tem=;
bool vis[maxn]={};
void init(int x,int y,LL v){
e[++tot].y=y;e[tot].v=v;e[tot].next=head[x];head[x]=tot;
}
void dfs(int x){
vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(!vis[e[i].y]){
d[e[i].y]=d[x]^e[i].v;
dfs(e[i].y);
}
else val[++cnt]=d[e[i].y]^d[x]^e[i].v;
}
}
void getit(LL x){
for(int i=;i>;i--){
if(x&c[i]){
if(!b[i]){b[i]=x;break;}
x^=b[i];
}
}
}
int main(){
int x,y;LL z;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%lld",&x,&y,&z);
init(x,y,z);init(y,x,z);
}
dfs();c[]=;
for(int i=;i<=;i++)c[i]=c[i-]*;
for(int i=;i<=cnt;i++){getit(val[i]);}
LL ans=d[n];
for(int i=;i>;i--)ans=max(ans,ans^b[i]);
printf("%lld\n",ans);
return ;
}
BZOJ 2115: [Wc2011] Xor 线性基 dfs的更多相关文章
- BZOJ.2115.[WC2011]Xor(线性基)
题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Soluti ...
- BZOJ 2115 [Wc2011] Xor ——线性基
[题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...
- BZOJ 2115: [Wc2011] Xor DFS + 线性基
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...
- 【BZOJ-2115】Xor 线性基 + DFS
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2142 Solved: 893[Submit][Status] ...
- BZOJ 2115: [Wc2011] Xor
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2794 Solved: 1184 [Submit][Stat ...
- bzoj 2115: [Wc2011] Xor xor高斯消元
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 797 Solved: 375[Submit][Status] ...
- bzoj 2115: [Wc2011] Xor【线性基+dfs】
-老是想到最长路上 其实可以这样:把每个环的xor和都存起来,然后任选一条1到n的路径的xor和ans,答案就是这个ans在环的线性基上跑贪心. 为什么是对的--因为可以重边而且是无相连通的,并且对于 ...
- bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基
题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的 ...
- BZOJ2115:[WC2011] Xor(线性基)
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...
随机推荐
- 如何在ie6/ie7/ie8中实现iframe背景透明
最近做了一个项目,涉及到ie8iframe背景透明的问题,做了老半天,才把它搞定的,现在把我的经历贴出来和大家分享: 众所周知的根据W3C CSS 2.1 规范规定,''''background-co ...
- Visual Studio 2010 SP1 在线安装后,找到缓存在本地的临时文件以便下次离线安装
由于在下载Visual Studio 2010安装程序(大约3G左右)的时候速度飞快,大约几分钟下载完毕(多线程下载工具下载),所以笔者在继续安装Visual Studio 2010 SP1的时候也选 ...
- linux bash shell之declare
一. #Set the right GC options based on the what we are runningdeclare -a server_cmds=("master&qu ...
- 缓存数据库-redis介绍
一:Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的 ...
- java基础46 IO流技术(输出字符流/缓冲输出字符流)
一.输出字符流 1.1.输出字符流体系 --------| Writer:输出字符流的基类(抽象类) ----------| FileWriter:向文件输出数据输出字符流(把程序中的数据写到硬盘中 ...
- 洛谷P1782 旅行商的背包
传送门啦 这个题不用二进制优化的话根本不行,现学的二进制优化,调了一段时间终于A了,不容易.. 如果不懂二进制优化的话可以去看我那个博客 二进制优化多重背包入口 不想TLE,不要打memset,一定要 ...
- Django基础 - 修改默认SQLite3数据库连接为MySQL
Django数据库连接默认为SQLite3,打开setting.py可以看到数据库部分的配置如下: DATABASES = { 'default': { 'ENGINE': 'django.db.ba ...
- java 多线程总结篇2之——Thread类及常用函数
此片文章主要总结的是Thread类及相关的基础概念和API,首先需要厘清线程调度中的几个基本概念: 一.线程调度的基本方法 1.调整线程优先级:Java线程有优先级,优先级高的线程会获得较多的运行机会 ...
- django(2)基本指令
打开 Linux 或 MacOS 的 Terminal (终端)直接在 终端中输入这些命令(不是 python 的 shell中) 如果是 windows 用 cmd(开始 搜索 cmd 或者 快捷键 ...
- php和mysql两种不同方式的分割字符串和类型转换
一.sql语句1.分割字符串方法:substring_index(字符串,'分隔符',正数从左数起几位/负数从右数起几位); 例如:subtring_index('aa_bb_cc_dd','_',1 ...