题目描述

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.

Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).

As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

这道题还是很复杂的。

根据去品尝牧草,我们很容易想到,如果一些草场在一个连通分量里面,只要到达这个连通分量,里面所有的草场就能到达,所以Tarjan缩点是无疑的了。

缩完点以后,我们保证不存在环,这样就可以跑一遍最长路,其中边权是每个连通分量的大小。

但是,还有能倒着走一条边的情况。这里就需要用到分层最短路。

在对于缩完点的图中,边u->v,我们将v连向u+n,代表下一层,当然u+n也要连到v+n,这样,我们能从每一个点,倒着走到下一层,但是无法从下一层走回来。

然后再输出起点连通分量+n的最长路dis值就好了。

但是注意,如果整个图缩完点是一个连通分量,那么要输出起点连通分量,不用加n。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <stack>
#include <queue>
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define in(a) a=read()
#define MAXN 200010
using namespace std;
inline int read(){
int x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
stack <int> S;
queue <int> Q;
int n,m;
int total1,head1[MAXN],to1[MAXN],nxt1[MAXN];
int total2,head2[MAXN<<],to2[MAXN<<],nxt2[MAXN<<],val[MAXN<<];
int num,cnt,dfn[MAXN],low[MAXN],vis[MAXN],bel[MAXN],size[MAXN],dis[MAXN];
inline void adl1(int a,int b){
total1++;
to1[total1]=b;
nxt1[total1]=head1[a];
head1[a]=total1;
return ;
}
inline void adl2(int a,int b,int c){
total2++;
to2[total2]=b;
val[total2]=c;
nxt2[total2]=head2[a];
head2[a]=total2;
return ;
}
inline void tarjan(int u){
dfn[u]=low[u]=++cnt;
S.push(u),vis[u]=;
for(int e=head1[u];e;e=nxt1[e]){
if(!dfn[to1[e]]){
tarjan(to1[e]);
low[u]=min(low[u],low[to1[e]]);
}
else if(vis[to1[e]]) low[u]=min(low[u],dfn[to1[e]]);
}
if(dfn[u]==low[u]){
num++;
while(!S.empty() && S.top()!=u) size[num]++,bel[S.top()]=num,vis[S.top()]=,S.pop();
if(!S.empty()) size[num]++,bel[S.top()]=num,vis[S.top()]=,S.pop();
}
return ;
}
inline void spfa(){
Q.push(bel[]);
dis[bel[]]=;
while(!Q.empty()){
int u=Q.front();
Q.pop(),vis[u]=;
for(int e=head2[u];e;e=nxt2[e])
if(dis[to2[e]]<dis[u]+val[e]){
dis[to2[e]]=dis[u]+val[e];
if(!vis[to2[e]]) vis[to2[e]]=,Q.push(to2[e]);
}
}
return ;
}
int main(){
in(n),in(m);
int a,b;
REP(i,,m) in(a),in(b),adl1(a,b);
REP(i,,n)
if(!dfn[i])
tarjan(i);
REP(u,,n)
for(int e=head1[u];e;e=nxt1[e])
if(bel[u]!=bel[to1[e]]){
adl2(bel[u],bel[to1[e]],size[bel[u]]);
adl2(bel[u]+num,bel[to1[e]]+num,size[bel[u]]);
adl2(bel[to1[e]],bel[u]+num,size[bel[to1[e]]]);
}
adl2(bel[],bel[]+num,size[bel[]]);
memset(vis,,sizeof(vis));
spfa();
cout<<dis[bel[]+num]<<endl;
return ;
}

洛谷P3119 USACO15JAN 草鉴定的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  2. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  4. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur

    原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...

  7. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  8. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  9. P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路

    https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...

随机推荐

  1. 【FCS NOI2018】福建省冬摸鱼笔记 day4

    第四天. 动态规划专题,讲师:闫神 讲了一些DP优化技巧,然而思想难度好大啊……根本没想到能优化那地步,连DP方程都没有呢. 不过有几题我还是想明白了. 讲了单调队列,决策单调性,四边形不等式,斜率优 ...

  2. USB descriptor【转】

    struct usb_device_descriptor { __u8 bLength;//设备描述符的字节数大小,为0x12 __u8 bDescriptorType;//描述符类型编号,为0x01 ...

  3. IIS 启用https

    参考:http://www.cnblogs.com/dudu/p/iis_https_ca.html

  4. 两行代码搞定js对象深浅拷贝

    有一段时间没有更新博客了,忙于工作.2018年刚过去,今天来开启2018第一篇博文.好了,咱们步入正题. 先上代码 /** * 遍历对象 * 1.判断是不是原始值 * 2.判断是数组还是对象 * 3. ...

  5. CCF CSP 201709-3 JSON查询

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-3 JSON查询 问题描述 JSON (JavaScript Object Not ...

  6. Java学习(JDBC java连接数据库)

    一.概述 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写 ...

  7. 【LOJ】#2061. 「HAOI2016」放棋子

    题解 水题,可惜要写高精度有点烦 一看障碍物的摆放方式和最后的答案没有关系,于是干脆不读了,直接二项式反演可以得到 设\(g_k\)为一种摆放方式恰好占了k个障碍物 \(f_k = \sum_{i = ...

  8. LoadRunner中Action的迭代次数的设置和运行场景中设置

    LoadRunner中Action的迭代次数的设置和运行场景中设置 LoadRunner是怎么重复迭代和怎么增加并发运行的呢? 另外,在参数化时,对于一次压力测试中均只能用一次的资源应该怎么参数化呢? ...

  9. linux下解除端口占用

    1.找出占用端口进程的pid sudo lsof -i:port 2.终止进程 pid

  10. Thymeleaf(Java模板引擎)

    一.概念 1.Thymeleaf是Web和独立环境的开源的Java模板引擎,能够处理HTML,XML,JavaScript,CSS甚至纯文本:2.Thymeleaf可以在Web(基于Servlet)和 ...