Graph Coloring
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5775   Accepted: 2678   Special Judge

Description

You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black.

 
Figure 1: An optimal graph with three black nodes 

Input

The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

Output

The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is given by the list of black nodes, separated by a blank.

Sample Input

1
6 8
1 2
1 3
2 4
2 5
3 4
3 6
4 6
5 6

Sample Output

3
1 4 5

Solution

最大点独立集???

差点就拍二分图叻....

然后发现这道题根本没法二分图啊??就是个普通图?

上网学习才发现,二分图最大点独立集=顶点数-最大匹配普通图最大点独立集=补图的最大团

然而补图是啥...最大团是啥....

图G的补图,通俗的来讲就是完全图Kn去除G的边集后得到的图Kn-G。在图论里面,一个图G的补图(complement)或者反面(inverse)是一个图有着跟G相同的点,而且这些点之间有边相连当且仅当在G里面他们没有边相连。

如果U V,且对任意两个顶点u,v∈U有(u,v)∈E,则称U是G的完全子图。G的完全子图U是G的团。G的最大团是指G的最大完全子图。

显然,原图的最大点独立集在补图中肯定两两相邻,所以求补图的最大团就是原图的最大点独立集。

用dfs求解,需要剪枝!

Code

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; int n, m, maxn, num;
int use[], now[], G[][];
void dfs(int x) {
if(x > n) {
maxn = num;
for(int i = ; i <= n; i ++)
use[i] = now[i];
return ;
}
int flag = ;
for(int i = ; i < x; i ++) {
if(now[i] && !G[i][x]) {//////如果之前选了的点与现在的点没有相邻 现在这个点就不能在当前团里面
flag = ; break;
}
}
if(flag) {
num ++;
now[x] = ;
dfs(x + );
num --;
now[x] = ;
}
if(num + n - x > maxn) dfs(x + );
} int main() {
int T;
scanf("%d", &T);
while(T --) {
memset(G, , sizeof(G));
memset(now, , sizeof(now));
memset(use, , sizeof(use));
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i ++) {
int u, v;
scanf("%d%d", &u, &v);
G[u][v] = G[v][u] = ; ////////补图
}
num = maxn = ;
dfs();
printf("%d\n", maxn);
for(int i = ; i <= n; i ++)
if(use[i]) printf("%d ", i);
printf("\n");
}
return ;
}

【POJ】1419:Graph Coloring【普通图最大点独立集】【最大团】的更多相关文章

  1. POJ 1419 Graph Coloring(最大独立集/补图的最大团)

    Graph Coloring Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4893   Accepted: 2271   ...

  2. poj 1419 Graph Coloring

    http://poj.org/problem?id=1419 题意: 一张图黑白染色,相邻点不能都染黑色,最多能染几个黑色点 最大点独立集 但是图不能同构为二分图,不能用二分图匹配来做 那就爆搜吧 还 ...

  3. POJ 2771 Guardian of Decency(求最大点独立集)

    该题反过来想:将所有可能发生恋爱关系的男女配对,那么可以带出去的人数应该等于这个二分图的最大独立集 先要做一下预处理,把不符合要求的双方先求出来, company[i][j]表示i.j四个标准都不符合 ...

  4. POJ1419 Graph Coloring(最大独立集)(最大团)

                                                               Graph Coloring Time Limit: 1000MS   Memor ...

  5. uva 193 Graph Coloring(图染色 dfs回溯)

    Description You are to write a program that tries to find an optimal coloring for a given graph. Col ...

  6. hdu 2768(建图,最大点独立集)

    Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. poj 1419Graph Coloring 【dfs+补图+计算最大团+计算最大独立集 【模板】】

    题目地址:http://poj.org/problem?id=1419 Graph Coloring Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  8. 【最大点独立集】【poj1419】【Graph Coloring】

    题意: 最多能选取多少点,没有边相连. 解法: 取反图,求最大团 代码: #include<cstdio> #include<cstring> #include<iost ...

  9. POJ 2771 最大点独立集

    这是经典的最大点独立集 还是可以转化成最大匹配数,为什么呢,因为求出最大匹配数之和,匹配的边的两个端点互斥,只能去一个,所以最后结果就用总点数-最大匹配数即可 #include <iostrea ...

随机推荐

  1. Count 1 in Binary

    Count how many 1 in binary representation of a 32-bit integer. Example Given 32, return 1 Given 5, r ...

  2. 【Educational Codeforces Round28】

    咸鱼选手发现自己很久不做cf了,晚节不保. A.Curriculum Vitae 枚举一下间断点的位置. #include<bits/stdc++.h> using namespace s ...

  3. 【Android开发】之Fragment开发1

    一直知道Fragment很强大,但是一直都没有去学习,现在有些空闲的时间,所以就去学习了一下Fragment的简单入门.我也会把自己的学习过程写下来,如果有什么不足的地方希望大牛指正,共同进步! 一. ...

  4. vue总结 08状态管理vuex

      状态管理 类 Flux 状态管理的官方实现 由于状态零散地分布在许多组件和组件之间的交互中,大型应用复杂度也经常逐渐增长.为了解决这个问题,Vue 提供 vuex:我们有受到 Elm 启发的状态管 ...

  5. android studio 解决avd启动问题 ----waiting for target device come online

    android studio 模拟器打不开,一直停留在第三方.waiting for target  device  come online 问题解决方法 方法1.Android Emulator 未 ...

  6. git —— 基本命令以及操作(No.1)

    git基本命令(附加描述) 1.把文件添加到暂存区$ git add readme.txt 2.把暂存区的文件文件添加到仓库$ git commit -m "提交说明" 备注:ad ...

  7. ObjectInputStream与ObjectOutputStream

    雇员类 package io; import java.io.Serializable; @SuppressWarnings("serial") public class Emp ...

  8. Filebeat配置paths里,不支持递归所有子目录

    这个知识点要牢记哟,不然,牛B吹大了,收不回哈. 官方文档为证: Currently it is not possible to recursively fetch all files in all ...

  9. HBase(八)HBase的协处理器

    一.协处理器简介 1. 起源 Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hbase 中,统计数 ...

  10. day7面向对象--进阶

    静态方法(@staticmethod)     通过@staticmethod装饰器即可把其装饰的方法变为一个静态方法,什么是静态方法呢?其实不难理解,普通的方法,可以在实例化后直接调用,并且在方法里 ...