codevs 1080 线段树练习 CDQ分治
一行N个方格,开始每个格子里都有一个整数。现在动态地提出一些问题和修改:提问的形式是求某一个特定的子区间[a,b]中所有元素的和;修改的规则是指定某一个格子x,加上或者减去一个特定的值A。现在要求你能对每个提问作出正确的回答。1≤N<100000,,提问和修改的总数m<10000条。
输入文件第一行为一个整数N,接下来是n行n个整数,表示格子中原来的整数。接下一个正整数m,再接下来有m行,表示m个询问,第一个整数表示询问代号,询问代号1表示增加,后面的两个数x和A表示给位置X上的数值增加A,询问代号2表示区间求和,后面两个整数表示a和b,表示要求[a,b]之间的区间和。
共m行,每个整数
6
4
5
6
2
1
3
4
1 3 5
2 1 4
1 1 9
2 2 6
22
22
1≤N≤100000, m≤10000 。
CDQ分治
答案只输出查询操作
按照操作出现时间将所有操作一分为二,在这里称为左右区间
对右区间的的查询操作有贡献的修改操作有2部分
1、左区间所有的修改操作
2、右区间本次查询操作之前的修改操作
注:修改操作的修改位置必须包含在查询操作内
对于划分出的左右区间仍然可以继续这样划分,
所以整个操作过程可以被划分为相同的子操作过程
(是不是有点儿像DP)
对于1,可以用一个变量记下来,加到右区间的查询操作上即可
对于2,递归处理
左区间继续递归处理即可
那么如何保证修改位置在查询操作范围内呢?
前缀和思想
对于查询区间[l,r]分为两部分 [1,l-1],[1,r]
用sum[1,r]-sum[1,l-1]即可
所以可设一个变量a,标记l-1=-1,r=1
累加答案的时候 +a*sum
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,tot,t,ans[];
struct node
{
int x,key,id,kind,bl;
}q[],tmp[];
bool cmp(node k,node l)
{
if(k.x!=l.x) return k.x<l.x;
return k.kind<l.kind;
}
void solve(int l,int r)
{
if(l==r) return;
int sum=;
int mid=l+r>>,ll=l,rr=mid+;
for(int i=l;i<=r;i++)
{
if(q[i].kind==&&q[i].id<=mid) sum+=q[i].key;
else if(q[i].kind==&&q[i].id>mid) ans[q[i].bl]+=q[i].key*sum;
}
for(int i=l;i<=r;i++)
{
if(q[i].id<=mid)tmp[ll++]=q[i];
else tmp[rr++]=q[i];
}
for(int i=l;i<=r;i++) q[i]=tmp[i];
solve(l,mid);solve(mid+,r);
}
int main()
{
scanf("%d",&n);
int x,y,z;
for(int i=;i<=n;i++)
{
scanf("%d",&x);
q[++tot].x=i;q[tot].key=x;q[tot].id=tot;q[tot].kind=;
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
if(x&)
{
q[++tot].x=y;q[tot].key=z;q[tot].id=tot;q[tot].kind=;
}
else
{
q[++tot].x=y-;q[tot].key=-;q[tot].id=tot;q[tot].kind=;q[tot].bl=++t;
q[++tot].x=z;q[tot].key=;q[tot].id=tot;q[tot].kind=;q[tot].bl=t;
}
}
sort(q+,q+tot+,cmp);
solve(,tot);
for(int i=;i<=t;i++) printf("%d\n",ans[i]);
}
codevs 1080 线段树练习 CDQ分治的更多相关文章
- codevs 1080 线段树点修改
先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...
- Codevs 1080 线段树练习(CDQ分治)
1080 线段树练习 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 一行N个方格,开始每个格子里都有 ...
- codevs 1080 线段树练习--用树状数组做的
1080 线段树练习 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态 ...
- codevs——1080 线段树练习
1080 线段树练习 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 一行N个方格,开始每个格子里都有 ...
- codevs 1080 线段树练习
链接:http://codevs.cn/problem/1080/ 先用树状数组水一发,再用线段树水一发 树状数组代码:84ms #include<cstdio> #include< ...
- Codevs 1080 线段树联系
题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态地提出一些问题和修改:提问的形式是求某一个特定的子区间[a,b]中所有元素的和:修改的规则是指定某一个格子x,加上或 ...
- codevs 1080 线段树练习(线段树)
题目: 题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态地提出一些问题和修改:提问的形式是求某一个特定的子区间[a,b]中所有元素的和:修改的规则是指定某一个格子x ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
随机推荐
- 【搜索】POJ-3009 DFS+回溯
一.题目 Description On Planet MM-21, after their Olympic games this year, curling is getting popular. B ...
- WebGL学习笔记(二)
目录 绘制多个顶点 使用缓冲区对象 类型化数组 使用drawArrays()函数绘制图形 图形的移动 图形的旋转 图形的缩放 绘制多个顶点 使用缓冲区对象 创建缓冲区对象 var vertexBuff ...
- Windows 常用快捷方式
gpedit.msc-----组策略sndrec32-----录音机nslookup----- ip地址侦测器explorer------ 打开资源管理器logoff-------注销命令tsshut ...
- NOI2017 退役记
OI生涯最后一篇游记写点不开心的让大家开心一下 Day -2(7.16) 上午的模拟赛奥妙重重. 下午也没怎么改题,看了一些新题,发现都不会,都看了下题解,发现大部分没看懂,好慌. 发现板子还没怎么复 ...
- 【Java并发编程】之十二:线程间通信中notifyAll造成的早期通知问题
如果线程在等待时接到通知,但线程等待的条件还不满足,此时,线程接到的就是早期通知,如果条件满足的时间很短,但很快又改变了,而变得不再满足,这时也将发生早期通知.这种现象听起来很奇怪,下面通过一个示例程 ...
- XOR and Favorite Number CodeForces - 617E(前缀异或+莫队)
题意原文地址:https://blog.csdn.net/chenzhenyu123456/article/details/50574169 题意:有n个数和m次查询,每次查询区间[l, r]问满足a ...
- 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!
51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...
- Android Paging库使用详解
Android分页包能够更轻易地在RecyclerView里面缓慢且优雅地加载数据. 许多应用从数据源消耗数据, 数据源里面有大量的数据, 但是一次却只展示一小部分. 分页包帮助应用观测和展示大量数据 ...
- Mac上安装mariadb
1.查看mariadb包信息 # brew info mariadb mariadb: stable 10.2.6 (bottled) Drop-in replacement for MySQL ht ...
- 《剑指offer》— JavaScript(22)从上往下打印二叉树
从上往下打印二叉树 题目描述 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 思路 借助两个辅助队列,一个用来存放结点,一个用来存放结点值: 先将根节点加入到队列中,然后遍历队列中的元素,遍历 ...