洛谷 P1992 不想兜圈的老爷爷 题解

题目描述

一位年过古稀的老爷爷在乡间行走

而他不想兜圈子 因为那会使他昏沉

偶然路过小A发扬助人为乐优良传统 带上地图 想知道路况是否一定使他清醒

usqwedf补充:为了让欢乐赛充满欢乐 小A还想问你一些数学作业……

输入输出格式

输入格式:

一行 n m k 表示乡间共有 n 个村庄 m 条道路

接下来 m 行 每行两个整数 x y 表示 村 x -> 村 y 单向连通

输出格式:

第一行 输出 Yes/No [清醒/不清醒]

第二行 若为 Yes 输出 2^k对9997取模 反之 输出 k^2

输入输出样例

输入样例#1:

3 3 3

1 2

2 3

3 1

输出样例#1:

No

9

说明

[数据范围]

对于70%的数据\(1<=n<=100 1<=m<=1000 1<=k<=30\)

对于100%的数据\(1<=n<=1000 1<=m<=10000 1<=k<=10^9\)

思路

首先明确这道题其实就是求是否有负环+快速幂。

然后可以使用spfa判断负环(每次加入队列时记录一下进队的次数,如果超过了总点数\(n\),那么就是有负环)。

快速幂就不多说了吧。。。

坑:输出\(No\)时,要求的\(k^2\)其实是不需要Mod的。

快速幂代码:(其实就是分类讨论的思想(手动滑稽))

#define ll long long
ll Fp(ll x,ll y){
ll a=x,b=y,kk=9997;
ll result=1;
while(b){
if(b%2==1) result = result*x%kk;
b/=2;
x=x*x%kk;
}
return result;
}

废话不多说,上总代码(真的很短):

#include<bits/stdc++.h>
#define ll long long
using namespace std;
queue<int> q;
ll n,m,k;
vector<int> v[1010];
ll vis[10000],dis[10000],tt[10000],ans;
void spfa(ll x){
memset(vis,0,sizeof(vis));
memset(dis,63,sizeof(dis));
memset(tt,0,sizeof(tt));
dis[x]=0;vis[x]=1;
q.push(x);
while(!q.empty()){
ll u=q.front();q.pop();vis[u]=0;
for(ll i=0;i<v[u].size();i++){
if(dis[v[u][i]]>dis[u]-1){
dis[v[u][i]]=dis[u]-1;
if(vis[v[u][i]]==0){
vis[v[u][i]]=1;
tt[v[u][i]]++;
if(tt[v[u][i]]>=n){
ans=-1;
return ;
}//判负环其实就是在这里,添加tt数组统计次数
q.push(v[u][i]);
}
}
}
}
}
ll Fp(ll x,ll y){
ll a=x,b=y,kk=9997;
ll result=1;
while(b){
if(b%2==1) result = result*x%kk;
b/=2;
x=x*x%kk;
}
return result;
}//快速幂
int main(){
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=1;i<=m;i++){
ll x,y;scanf("%lld%lld",&x,&y);v[x].push_back(y);//读入
}
for(ll i=1;i<=n;i++){
spfa(i);
if(ans==-1){
puts("No");
printf("%lld\n",k*k);
return 0;
}
}
puts("Yes");
printf("%lld\n",Fp(2,k));
}

洛谷 P1992 不想兜圈的老爷爷 题解的更多相关文章

  1. 【洛谷P3369】【模板】普通平衡树题解

    [洛谷P3369][模板]普通平衡树题解 题目链接 题意: 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3 ...

  2. BZOJ5285 & 洛谷4424 & UOJ384:[HNOI/AHOI2018]寻宝游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 https://www.luogu.org/problemnew/show/P4424 ht ...

  3. 洛谷p3384【模板】树链剖分题解

    洛谷p3384 [模板]树链剖分错误记录 首先感谢\(lfd\)在课上调了出来\(Orz\) \(1\).以后少写全局变量 \(2\).线段树递归的时候最好把左右区间一起传 \(3\).写\(dfs\ ...

  4. 洛谷 P1789 【Mc生存】插火把 题解

    P1789 [Mc生存]插火把 题目背景 初一党应该都知道...... 题目描述 话说有一天 linyorson 在"我的世界"开了一个 \(n\times n(n\le 100) ...

  5. 洛谷——P1579 哥德巴赫猜想(升级版)

    P1579 哥德巴赫猜想(升级版) 题目背景 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和.质数是指除了1和本身之外没有其他约 ...

  6. 洛谷 P1579 哥德巴赫猜想(升级版)【筛素数/技巧性枚举/易错】

    [链接]:https://www.luogu.org/problemnew/show/P1579 题目背景 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇 ...

  7. 洛谷P1579 哥德巴赫猜想(升级版)【水题+素数】

    1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和.质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为 ...

  8. Java实现 洛谷 P1579 哥德巴赫猜想(升级版)

    题目背景 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和.质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是 ...

  9. 【洛谷 P3199】 [HNOI2009]最小圈(分数规划,Spfa)

    题目链接 一开始不理解为什么不能直接用\(Tarjan\)跑出换直接求出最小值,然后想到了"简单环",恍然大悟. 二分答案,把所有边都减去\(mid\),判是否存在负环,存在就\( ...

随机推荐

  1. (转)Python中的generator详解

    本文转自:http://www.cnblogs.com/xybaby/p/6322376.html 作者:xybaby 注:本文在原文基础上做了一点点修改,仅仅作为个人理解与记忆,建议直接查看原文. ...

  2. GO_03:GO语言基础语法

    1. Go项目的目录结构 一般的,一个Go项目在GOPATH下,会有如下三个目录: project   --- bin   --- pkg   --- src 其中,bin 存放编译后的可执行文件:p ...

  3. Java基础-IO流对象之数据流(DataOutputStream与DataInputStream)

    Java基础-IO流对象之数据流(DataOutputStream与DataInputStream) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据流特点 操作基本数据类型 ...

  4. include动作和include指令的区别

    1. include指令在被导入页面时,会与原有的jsp代码完全融合,共同生成同一个Servlet:而include动作则会在原有的jsp代码使用include方法而被导入页面,所以includ指令在 ...

  5. vue相关安装命令

    安装cnpm npm install cnpm -g --registry=https://registry.npm.taobao.org

  6. 2017 清北济南考前刷题Day 7 afternoon

    期望得分:100+100+30=230 实际得分:100+100+30=230 1. 三向城 题目描述 三向城是一个巨大的城市,之所以叫这个名字,是因为城市中遍布着数不尽的三岔路口.(来自取名力为0的 ...

  7. android edittext 获取焦点并弹出软键盘

    editText.setFocusable(true); editText.setFocusableInTouchMode(true); editText.requestFocus(); activi ...

  8. 男女通用的减肥计划 10分钟家庭hiit训练

    在大城市的年轻人,一般都会比较忙,晚上下班吃完饭,到家就要8-9点了,再让他们去,有时候真的不太方便. 其实你如果想要,也不一定要,在家里做hiit运动,就可以了. hiit(高强度间歇运动),是目前 ...

  9. mysql 允许远程登录

    GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '密码' WITH GRANT OPTION;flush privileges;

  10. Python数据类型(整型,字符串类型,列表)

    一:数据的概念 1.数据是什么 x=10,数据10就是我们要存储的数据. 2.为什么数据要分不同的种类? 因为数据是用来表示状态的,不同的状态就要用不同类型的数据去表示. 3:Python中常见的数据 ...