伸展树的实现——c++
一、介绍
伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。
(01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。
(02) 除了拥有二叉查找树的性质之外,伸展树还具有的一个特点是:当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。
假设想要对一个二叉查找树执行一系列的查找操作。为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生,它是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。
相比于"二叉查找树"和"AVL树",学习伸展树时需要重点关注是"伸展树的旋转算法"。
二、伸展树的c++实现
1. 基本定义
1.1 节点
template <class T>
class SplayTreeNode{
public:
T key; // 关键字(键值)
SplayTreeNode *left; // 左孩子
SplayTreeNode *right; // 右孩子 SplayTreeNode():left(NULL),right(NULL) {} SplayTreeNode(T value, SplayTreeNode *l, SplayTreeNode *r):
key(value), left(l),right(r) {}
};
SplayTreeNode是伸展树节点对应的类。它包括的几个组成元素:
(01) key -- 是关键字,是用来对伸展树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
1.2 伸展树
template <class T>
class SplayTree {
private:
SplayTreeNode<T> *mRoot; // 根结点 public:
SplayTree();
~SplayTree(); // 前序遍历"伸展树"
void preOrder();
// 中序遍历"伸展树"
void inOrder();
// 后序遍历"伸展树"
void postOrder(); // (递归实现)查找"伸展树"中键值为key的节点
SplayTreeNode<T>* search(T key);
// (非递归实现)查找"伸展树"中键值为key的节点
SplayTreeNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 旋转key对应的节点为根节点,并返回值为根节点。
void splay(T key); // 将结点(key为节点键值)插入到伸展树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁伸展树
void destroy(); // 打印伸展树
void print();
private: // 前序遍历"伸展树"
void preOrder(SplayTreeNode<T>* tree) const;
// 中序遍历"伸展树"
void inOrder(SplayTreeNode<T>* tree) const;
// 后序遍历"伸展树"
void postOrder(SplayTreeNode<T>* tree) const; // (递归实现)查找"伸展树x"中键值为key的节点
SplayTreeNode<T>* search(SplayTreeNode<T>* x, T key) const;
// (非递归实现)查找"伸展树x"中键值为key的节点
SplayTreeNode<T>* iterativeSearch(SplayTreeNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的伸展树的最小结点。
SplayTreeNode<T>* minimum(SplayTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的伸展树的最大结点。
SplayTreeNode<T>* maximum(SplayTreeNode<T>* tree); // 旋转key对应的节点为根节点,并返回值为根节点。
SplayTreeNode<T>* splay(SplayTreeNode<T>* tree, T key); // 将结点(z)插入到伸展树(tree)中
SplayTreeNode<T>* insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z); // 删除伸展树(tree)中的结点(键值为key),并返回被删除的结点
SplayTreeNode<T>* remove(SplayTreeNode<T>* &tree, T key); // 销毁伸展树
void destroy(SplayTreeNode<T>* &tree); // 打印伸展树
void print(SplayTreeNode<T>* tree, T key, int direction);
};
playTree是伸展树对应的类。它包括根节点mRoot和伸展树的函数接口。
2. 旋转(重点)
/*
* 旋转key对应的节点为根节点,并返回值为根节点。
*
* 注意:
* (a):伸展树中存在"键值为key的节点"。
* 将"键值为key的节点"旋转为根节点。
* (b):伸展树中不存在"键值为key的节点",并且key < tree->key。
* b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
* b-2 "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
* (c):伸展树中不存在"键值为key的节点",并且key > tree->key。
* c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
* c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::splay(SplayTreeNode<T>* tree, T key)
{
SplayTreeNode<T> N, *l, *r, *c; if (tree == NULL)
return tree; N.left = N.right = NULL;
l = r = &N; for (;;)
{
if (key < tree->key)
{
if (tree->left == NULL)
break;
if (key < tree->left->key)
{
c = tree->left; /* rotate right */
tree->left = c->right;
c->right = tree;
tree = c;
if (tree->left == NULL)
break;
}
r->left = tree; /* link right */
r = tree;
tree = tree->left;
}
else if (key > tree->key)
{
if (tree->right == NULL)
break;
if (key > tree->right->key)
{
c = tree->right; /* rotate left */
tree->right = c->left;
c->left = tree;
tree = c;
if (tree->right == NULL)
break;
}
l->right = tree; /* link left */
l = tree;
tree = tree->right;
}
else
{
break;
}
} l->right = tree->left; /* assemble */
r->left = tree->right;
tree->left = N.right;
tree->right = N.left; return tree;
} template <class T>
void SplayTree<T>::splay(T key)
{
mRoot = splay(mRoot, key);
}
上面的代码的作用:将"键值为key的节点"旋转为根节点,并返回根节点。它的处理情况共包括:
(a):伸展树中存在"键值为key的节点"。
将"键值为key的节点"旋转为根节点。
(b):伸展树中不存在"键值为key的节点",并且key < tree->key。
b-1) "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
b-2) "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
(c):伸展树中不存在"键值为key的节点",并且key > tree->key。
c-1) "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
c-2) "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
下面列举个例子分别对a进行说明。
在下面的伸展树中查找10,共包括"右旋" --> "右链接" --> "组合"这3步。
(01) 右旋
对应代码中的"rotate right"部分
(02) 右链接
对应代码中的"link right"部分
(03) 组合
对应代码中的"assemble"部分
提示:如果在上面的伸展树中查找"70",则正好与"示例1"对称,而对应的操作则分别是"rotate left", "link left"和"assemble"。
其它的情况,例如"查找15是b-1的情况,查找5是b-2的情况"等等,这些都比较简单,大家可以自己分析。
3. 插入节点
/*
* 将结点插入到伸展树中,并返回根节点
*
* 参数说明:
* tree 伸展树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z)
{
SplayTreeNode<T> *y = NULL;
SplayTreeNode<T> *x = tree; // 查找z的插入位置
while (x != NULL)
{
y = x;
if (z->key < x->key)
x = x->left;
else if (z->key > x->key)
x = x->right;
else
{
cout << "不允许插入相同节点(" << z->key << ")!" << endl;
delete z;
return tree;
}
} if (y==NULL)
tree = z;
else if (z->key < y->key)
y->left = z;
else
y->right = z; return tree;
} template <class T>
void SplayTree<T>::insert(T key)
{
SplayTreeNode<T> *z=NULL; // 如果新建结点失败,则返回。
if ((z=new SplayTreeNode<T>(key,NULL,NULL)) == NULL)
return ; // 插入节点
mRoot = insert(mRoot, z);
// 将节点(key)旋转为根节点
mRoot = splay(mRoot, key);
}
4. 删除节点
/*
* 删除结点(节点的键值为key),返回根节点
*
* 参数说明:
* tree 伸展树的根结点
* key 待删除结点的键值
* 返回值:
* 根节点
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::remove(SplayTreeNode<T>* &tree, T key)
{
SplayTreeNode<T> *x; if (tree == NULL)
return NULL; // 查找键值为key的节点,找不到的话直接返回。
if (search(tree, key) == NULL)
return tree; // 将key对应的节点旋转为根节点。
tree = splay(tree, key); if (tree->left != NULL)
{
// 将"tree的前驱节点"旋转为根节点
x = splay(tree->left, key);
// 移除tree节点
x->right = tree->right;
}
else
x = tree->right; delete tree; return x; } template <class T>
void SplayTree<T>::remove(T key)
{
mRoot = remove(mRoot, key);
}
remove(key)是外部接口,remove(tree, key)是内部接口。
remove(tree, key)的作用是:删除伸展树中键值为key的节点。
它会先在伸展树中查找键值为key的节点。若没有找到的话,则直接返回。若找到的话,则将该节点旋转为根节点,然后再删除该节点。
本文来自http://www.cnblogs.com/skywang12345/p/3604238.html
伸展树的实现——c++的更多相关文章
- Splay伸展树学习笔记
Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Ta ...
- 纸上谈兵:伸展树(splay tree)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...
- SplayTree伸展树的非递归实现(自底向上)
Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋 ...
- 伸展树(一)之 图文解析 和 C语言的实现
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后, ...
- 伸展树(二)之 C++的实现
概要 上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树.本章是伸展树的C++实现,后续再给出Java版本.还是那句老话,它们的原理都一样,择其一了解即可. 目录1. 伸展树的介绍2. 伸展树的C ...
- 伸展树(三)之 Java的实现
概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明 ...
- hdu1890 伸展树(区间反转)
对于大神来说这题是水题.我搞这题花了快2天. 伸展树的优点有什么,就是树不管你怎么旋转序列是不会改变得,并且你要使区间反转,只要把第k大的点转到根结点,那么它的左子树就是要交换的区间[l,r),然后交 ...
- POJ 3580 (伸展树)
题目链接: http://poj.org/problem?id=3580 题目大意:对一个序列进行以下六种操作.输出MIN操作的结果. 解题思路: 六个操作,完美诠释了伸展树有多么吊.注意,默认使用L ...
- Splay 伸展树
废话不说,有篇论文可供参考:杨思雨:<伸展树的基本操作与应用> Splay的好处可以快速分裂和合并. ===============================14.07.26更新== ...
- UVa 11922 - Permutation Transformer 伸展树
第一棵伸展树,各种调试模板……TVT 对于 1 n 这种查询我处理的不太好,之前序列前后没有添加冗余节点,一直Runtime Error. 后来加上冗余节点之后又出了别的状况,因为多了 0 和 n+1 ...
随机推荐
- 20172325 2017-2018-2 《Java程序设计》第七周学习总结
20172325 2017-2018-2 <Java程序设计>第七周学习总结 教材学习内容总结 1.创建子类 (1) 子类是父类更具体的版本,但子类的实例化不依赖于父类: (2) 继承有单 ...
- 什么是Jenkins 以及如何使用?
Jenkins是什么? Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成.集成Jenkins可以用于一些测 ...
- sqoop 安装使用
安装配置: 1.将sqoop-1.4.4.tar.gz 上传到/usr/local/ 2.解压 tar -zxvf sqoop-1.4.4.tar.gz 3.配置 vim /etc/profile 在 ...
- R 语言安装问题集锦
R安装问题R CMD INSTALL -l /data1/jhh/envirment/R/R_lib /data1/jhh/software/qvalue_2.10.0.tar.gz 问题1 :con ...
- 2018.09.28 hdu5434 Peace small elephant(状压dp+矩阵快速幂)
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后 ...
- 2018.09.23 codeforces 1053B. Vasya and Good Sequences(前缀和)
传送门 考试的时候卡了一会儿. 显然这个答案只跟二进制位为1的数量有关. 还有一个显然的结论. 对于一个区间[l,r][l,r][l,r],如果其中单个数二进制位为1的数量最大值不到区间所有数二进制位 ...
- 2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)
传送门 dp好题. 每一天要变更路线一定还是走最短路. 所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路.显然是可以dp的. 设f[i]表示第i天的最优花销.那么我们枚举在 ...
- Spring Cloud基础教程视频教程
视频课程包含: Spring Cloud基础视频教程24G 目录 获取方式: 关注公众微信号:博涵大数据 或者扫描下面的二维码关注获取. 关注后在公众平台上回复"SpringCloud基础& ...
- POJ3104 Drying 2017-05-09 23:33 41人阅读 评论(0) 收藏
Drying Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15604 Accepted: 3976 Descripti ...
- PAT甲 1029. Median (25) 2016-09-09 23:11 27人阅读 评论(0) 收藏
1029. Median (25) 时间限制 1000 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given an incr ...