解析
 
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import netCDF4 file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
data = file.read();
print(len(data))
file.close()
#
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
length = 0 zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00')
length = length + 12+38+8+8
#
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version) #
year,month,day,hour,minute,interval, = unpack("HHHHHH", file.read(2+2+2+2+2+2))
print("时间: "+str(year)+"-"+str(month)+"-"+str(day)+" "+str(hour)+":"+str(minute))
print("时段长: "+str(interval))
length = length + 2+2+2+2+2+2 #
XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids))
length = length + 2+2+2 #
RadarCount, = unpack("i", file.read(4))
print("拼图雷达数: " + str(RadarCount))
length = length + 4 #
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso))
length = length + 4+4+4+4+4+4 ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print("垂直方向的高度:"+str(ZhighGrids))
length = length + 40*4 #
RadarStationNames=[]
for i in range(0, 20):
RadarStationName, = unpack("16s", file.read(16))
RadarStationName = RadarStationName.decode("gbk")
RadarStationNames.append(RadarStationName.rstrip('\x00'))
print("相关站点名称:"+str(RadarStationNames))
length = length + 20*16 #
RadarLongitudes=[]
for i in range(0, 20):
RadarLongitude, = unpack("f", file.read(4))
RadarLongitudes.append(RadarLongitude)
print("相关站点所在经度:"+str(RadarLongitudes))
length = length + 20*4 #
RadarLatitudes=[]
for i in range(0, 20):
RadarLatitude, = unpack("f", file.read(4))
RadarLatitudes.append(RadarLatitude)
print("相关站点所在纬度:"+str(RadarLatitudes))
length = length + 20*4 #
RadarAltitudes=[]
for i in range(0, 20):
RadarAltitude, = unpack("f", file.read(4))
RadarAltitudes.append(RadarAltitude)
print("相关站点所在海拔高度:"+str(RadarAltitudes))
length = length + 20*4 #
MosaicFlags=[]
for i in range(0, 20):
MosaicFlag, = unpack("B", file.read(1))
MosaicFlags.append(MosaicFlag)
print("该相关站点数据是否包含在本次拼图中:"+str(MosaicFlags))
length = length + 20*1 #
m_iDataType, = unpack("h", file.read(2))
print("数据类型定义:"+str(m_iDataType))
if m_iDataType==0:
print("unsigned char")
elif m_iDataType==1:
print("char")
elif m_iDataType==2:
print("unsigned short")
elif m_iDataType==3:
print("short")
elif m_iDataType==4:
print("unsigned short")
length = length + 2 #
m_iLevelDimension, = unpack("h", file.read(2))
print("每一层的向量数:"+str(m_iLevelDimension))
length = length + 2 #
Reserveds=[]
Reserveds, = unpack("168s", file.read(168))
Reserveds = Reserveds.decode("gbk").rstrip('\x00')
print("该相关站点数据是否包含在本次拼图中: "+Reserveds)
length = length + 168 #打印数据
valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
#value, = unpack("b", file.read(1))
'''
if value > 0:
print(value)
'''
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
#
#print("数据:"+str(valueZYX))
length = length + ZNumGrids*YNumGrids*XNumGrids*2
print(length)
#
print("----------------------------数据----------------------------") file.close()
生成ASCII
import time
from struct import * start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) textZYX = []
for i in range(0, ZNumGrids):
textYX = []
for j in range(0, YNumGrids):
textX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
textX.append(str(value))
textYX.append(' '.join(textX))
textZYX.append('\n'.join(textYX))
file.close() #
#------------------------------------------------------------------------------- file_object = open('ASCIIData.txt', 'w')
file_object.write("NCOLS " + str(XNumGrids) + "\n")
file_object.write("NROWS " + str(YNumGrids) + "\n")
file_object.write("XLLCENTER " + str(StartLon) + "\n")
file_object.write("YLLCENTER " + str(StartLat - YReso * (YNumGrids - 1)) + "\n") # round(YReso, 3) *
file_object.write("CELLSIZE " + str(XReso) + "\n")
file_object.write("NODATA_VALUE " + str(-9999) + "\n")
#
#
file_object.writelines(textZYX[0])
file_object.close()
end = time.clock()
print("read: %f s" % dateSpanTransfer)
dateSpanTransfer = end - start #-------------------------------------------------------------------------------
生成Image(.img)
import time
from struct import *
from osgeo import gdal, osr
from osgeo.gdalconst import *
import numpy start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
#
#------------------------------------------------------------------------------- end = time.clock()
dateSpanTransfer = end - start
print("read: %f s" % dateSpanTransfer)
#
#
driver = gdal.GetDriverByName('HFA')
driver.Register()
dataSetImg = driver.Create( "D:/radarDataTest/edarsImage.img", XNumGrids, YNumGrids, 1, gdal.GDT_Float32 )
#
dataSetImg.SetGeoTransform( [ StartLon, XReso, 0, StartLat, 0, -YReso ] )
#
srs = osr.SpatialReference()
srs.SetWellKnownGeogCS( 'WGS84' )
dataSetImg.SetProjection( srs.ExportToWkt() )
#
value2D = numpy.matrix( valueYX, dtype=numpy.float32 )
dataSetImg.GetRasterBand(1).WriteArray( value2D )
#
dataSetImg = None #datasource.Destroy()
#-------------------------------------------------------------------------------
生成netCDF
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import numpy
from numpy.random import uniform
from netCDF4 import Dataset start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print(" 经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
#value, = unpack("h", file.read(2))
#textX.append(str(value/10.0))
value, = unpack("b", file.read(1))
textX.append(str(value*2+66.0))
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
valueXYZ = []
for k in range(0, XNumGrids):
for j in range(0, YNumGrids):
for i in range(0, ZNumGrids):
valueXYZ.append(valueZYX[i][j][k]) #
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
rootgrp = Dataset("test.nc", "w", format="NETCDF4")
#rootgrp = Dataset("test.nc", "a")
#fcstgrp = rootgrp.createGroup("forecasts") lon = rootgrp.createDimension("lon", XNumGrids)
lat = rootgrp.createDimension("lat", YNumGrids)
alt = rootgrp.createDimension("alt", ZNumGrids) lon = rootgrp.createVariable("lon", "f8", ("lon",))
lat = rootgrp.createVariable("lat", "f8", ("lat",))
alt = rootgrp.createVariable("alt", "f8", ("alt",)) #val = rootgrp.createVariable("val","f4",("zz","yy","xx",))
val = rootgrp.createVariable("val","f4",("lon","lat","alt",)) #
rootgrp.description = dataName
rootgrp.history = "创建时间: " + time.strftime('%Y-%m-%d %X', time.localtime())
rootgrp.Source_Software = "SmartMap"
#
lon.units = "degrees_east"
lon.long_name = "longitude coordinate"
lon.standard_name = "longitude"
#
lat.units = "degrees_north"
lat.long_name = "latitude coordinate"
lat.standard_name = "latitude"
#
alt.units = "m"
alt.long_name = "altitude"
alt.standard_name = "heigh"
#
val.long_name = "value"
val.esri_pe_string = 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]'
val.coordinates = "lon lat alt"
val.units = "Degree"
val.missing_value = -9999 #interval = 0.009999999776482582
interval = 0.01
#x = numpy.arange(-90,91,2.5) x = []
for i in range(0, XNumGrids):
x.append(StartLon + i * round(XReso, 3))
#x = numpy.array(x)
lon[:] = x #
#y = numpy.arange(-180,180,2.5)
y = []
for i in range(0, YNumGrids):
y.append(StartLat - i * round(YReso, 3))
#y = numpy.array(y)
lat[:] = y
# z = []
for i in range(0, ZNumGrids):
z.append(ZhighGrids[i])
#z = numpy.array(z)
alt[:] = z
# #kk = uniform(size=(2,3,4,5))
#print(kk) #val[::]=valueZYX
val[::] = valueXYZ #
rootgrp.close()

Python解析SWAN气象雷达数据--(解析、生成ASCII、Image、netCDF)的更多相关文章

  1. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(1)

    一.数据类型及解析方式 一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值.内容一般分为两部分,非结构化的数据 和 结构化的数据. 非结构化数据:先有数据,再有结构, 结构化数 ...

  2. python爬虫---爬虫的数据解析的流程和解析数据的几种方式

    python爬虫---爬虫的数据解析的流程和解析数据的几种方式 一丶爬虫数据解析 概念:将一整张页面中的局部数据进行提取/解析 作用:用来实现聚焦爬虫的吧 实现方式: 正则 (针对字符串) bs4 x ...

  3. 数据解析_bs进行数据解析

    1.bs4进行数据解析 数据解析的原理 1.标签定位 2.提取标签,标签属性中存储的数据值 bs4数据解析的原理 1.实例化一个BeautifulSoup对象,并且将页面源码数据加载到该对象中 2.通 ...

  4. Python爬虫之三种数据解析方式

    一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...

  5. 05 Python网络爬虫的数据解析方式

    一.爬虫数据解析的流程 1.指定url 2.基于requests模块发起请求 3.获取响应中的数据 4.数据解析 5.进行持久化存储 二.解析方法 (1)正则解析 (2)bs4解析 (3)xpath解 ...

  6. Unity3d-XML文件数据解析&JSON数据解析

    1.XML文件数据解析:(首先须要导入XMLParser解析器,The latest released download from:http://dev.grumpyferret.com/unity/ ...

  7. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(2)

    上半部分内容链接 : https://www.cnblogs.com/lowmanisbusy/p/9069330.html 四.json和jsonpath的使用 JSON(JavaScript Ob ...

  8. 如何使用fastJson来解析JSON格式数据和生成JSON格式数据

    由于项目用到了JSON格式的数据,在网上搜索到了阿里的fastjson比较好用,特此记录fastjson用法,以备以后查询之用. decode: 首先创建一个JSON解析类: public class ...

  9. python+jinja2实现接口数据批量生成工具

    在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢. 答案是肯定的! ...

随机推荐

  1. iOS--线程的创建

    1.获取当前线程 NSThread *current=[NSThread currentThread]; 2.获取主线程的另外一种方式 NSThread *main=[NSThread mainThr ...

  2. Web端测试和移动端测试

    之前参加的项目有涉及Web端测试和移动端测试,简单的记录下他们之间的区别:   1.记录bug 在Web端可以通过系统自带的截图和QQ截图等方式来截取bug的图片,对于错误的地方可以用工具自带的标识来 ...

  3. Python sys os getpass 包的导入

    块的导入 导入一个py文件,解释器解释该py文件 导入一个包,解释器解释该包下的 init.py 文件 import module 直接导入模块 from module.xx.xx import xx ...

  4. thuwc2019总结

    275,是我的自己的估分 而350,是面试线 就发挥而言,这次的发挥相当糟糕,第一天选择全场打暴力而不打签到题正解,第二天因A题思路想偏造成2h额外时间花费.第二题与第三题之间,我选择了难打的第三题而 ...

  5. Sublime Text 3快捷键的使用技巧(python)

    Sublime Text 3非常实用,但是想要用好,一些快捷键不可或缺,所以转了这个快捷键汇总. 先拉出来说几个切身体会最常用, Ctrl+Z 撤销. Ctrl+Y 恢复撤销 Alt+Shift+2  ...

  6. JAVA跨域资源访问CORSFilter

    当一个资源从与该资源本身所在的服务器不同的域或端口不同的域或不同的端口请求一个资源时,资源会发起一个跨域 HTTP 请求. 出于安全考虑,浏览器会限制从脚本内发起的跨域HTTP请求.跨域资源共享机制允 ...

  7. js便签笔记(2)——DOM元素的特性(Attribute)和属性(Property)

    1.介绍: 上篇js便签笔记http://www.cnblogs.com/wangfupeng1988/p/3626300.html最后提到了dom元素的Attribute和Property,本文简单 ...

  8. mongodb二进制安装与yum安装

    一.什么是mongodb MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种.MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当 ...

  9. Nodejs学习笔记(十三)—PM2

    简介 PM2 pm2是一个内置负载均衡的node.js应用进程管理器(也支持Windows),其它的类似功能也有不少,但是感觉pm2功能更强,更值的推荐 GitHub地址:https://github ...

  10. 简述组件化解决方案CTMediator与MGJRouter的主要思想

    简述CTMediator   CTMediator按照功能的结构来讲,使用时需要实现CTMediator的个三部分. 1.CTMediator类:承担总枢纽,总调度的责任 2.Target_(Modu ...