解析
 
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import netCDF4 file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
data = file.read();
print(len(data))
file.close()
#
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
length = 0 zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00')
length = length + 12+38+8+8
#
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version) #
year,month,day,hour,minute,interval, = unpack("HHHHHH", file.read(2+2+2+2+2+2))
print("时间: "+str(year)+"-"+str(month)+"-"+str(day)+" "+str(hour)+":"+str(minute))
print("时段长: "+str(interval))
length = length + 2+2+2+2+2+2 #
XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids))
length = length + 2+2+2 #
RadarCount, = unpack("i", file.read(4))
print("拼图雷达数: " + str(RadarCount))
length = length + 4 #
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso))
length = length + 4+4+4+4+4+4 ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print("垂直方向的高度:"+str(ZhighGrids))
length = length + 40*4 #
RadarStationNames=[]
for i in range(0, 20):
RadarStationName, = unpack("16s", file.read(16))
RadarStationName = RadarStationName.decode("gbk")
RadarStationNames.append(RadarStationName.rstrip('\x00'))
print("相关站点名称:"+str(RadarStationNames))
length = length + 20*16 #
RadarLongitudes=[]
for i in range(0, 20):
RadarLongitude, = unpack("f", file.read(4))
RadarLongitudes.append(RadarLongitude)
print("相关站点所在经度:"+str(RadarLongitudes))
length = length + 20*4 #
RadarLatitudes=[]
for i in range(0, 20):
RadarLatitude, = unpack("f", file.read(4))
RadarLatitudes.append(RadarLatitude)
print("相关站点所在纬度:"+str(RadarLatitudes))
length = length + 20*4 #
RadarAltitudes=[]
for i in range(0, 20):
RadarAltitude, = unpack("f", file.read(4))
RadarAltitudes.append(RadarAltitude)
print("相关站点所在海拔高度:"+str(RadarAltitudes))
length = length + 20*4 #
MosaicFlags=[]
for i in range(0, 20):
MosaicFlag, = unpack("B", file.read(1))
MosaicFlags.append(MosaicFlag)
print("该相关站点数据是否包含在本次拼图中:"+str(MosaicFlags))
length = length + 20*1 #
m_iDataType, = unpack("h", file.read(2))
print("数据类型定义:"+str(m_iDataType))
if m_iDataType==0:
print("unsigned char")
elif m_iDataType==1:
print("char")
elif m_iDataType==2:
print("unsigned short")
elif m_iDataType==3:
print("short")
elif m_iDataType==4:
print("unsigned short")
length = length + 2 #
m_iLevelDimension, = unpack("h", file.read(2))
print("每一层的向量数:"+str(m_iLevelDimension))
length = length + 2 #
Reserveds=[]
Reserveds, = unpack("168s", file.read(168))
Reserveds = Reserveds.decode("gbk").rstrip('\x00')
print("该相关站点数据是否包含在本次拼图中: "+Reserveds)
length = length + 168 #打印数据
valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
#value, = unpack("b", file.read(1))
'''
if value > 0:
print(value)
'''
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
#
#print("数据:"+str(valueZYX))
length = length + ZNumGrids*YNumGrids*XNumGrids*2
print(length)
#
print("----------------------------数据----------------------------") file.close()
生成ASCII
import time
from struct import * start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) textZYX = []
for i in range(0, ZNumGrids):
textYX = []
for j in range(0, YNumGrids):
textX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
textX.append(str(value))
textYX.append(' '.join(textX))
textZYX.append('\n'.join(textYX))
file.close() #
#------------------------------------------------------------------------------- file_object = open('ASCIIData.txt', 'w')
file_object.write("NCOLS " + str(XNumGrids) + "\n")
file_object.write("NROWS " + str(YNumGrids) + "\n")
file_object.write("XLLCENTER " + str(StartLon) + "\n")
file_object.write("YLLCENTER " + str(StartLat - YReso * (YNumGrids - 1)) + "\n") # round(YReso, 3) *
file_object.write("CELLSIZE " + str(XReso) + "\n")
file_object.write("NODATA_VALUE " + str(-9999) + "\n")
#
#
file_object.writelines(textZYX[0])
file_object.close()
end = time.clock()
print("read: %f s" % dateSpanTransfer)
dateSpanTransfer = end - start #-------------------------------------------------------------------------------
生成Image(.img)
import time
from struct import *
from osgeo import gdal, osr
from osgeo.gdalconst import *
import numpy start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
#
#------------------------------------------------------------------------------- end = time.clock()
dateSpanTransfer = end - start
print("read: %f s" % dateSpanTransfer)
#
#
driver = gdal.GetDriverByName('HFA')
driver.Register()
dataSetImg = driver.Create( "D:/radarDataTest/edarsImage.img", XNumGrids, YNumGrids, 1, gdal.GDT_Float32 )
#
dataSetImg.SetGeoTransform( [ StartLon, XReso, 0, StartLat, 0, -YReso ] )
#
srs = osr.SpatialReference()
srs.SetWellKnownGeogCS( 'WGS84' )
dataSetImg.SetProjection( srs.ExportToWkt() )
#
value2D = numpy.matrix( valueYX, dtype=numpy.float32 )
dataSetImg.GetRasterBand(1).WriteArray( value2D )
#
dataSetImg = None #datasource.Destroy()
#-------------------------------------------------------------------------------
生成netCDF
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import numpy
from numpy.random import uniform
from netCDF4 import Dataset start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print(" 经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
#value, = unpack("h", file.read(2))
#textX.append(str(value/10.0))
value, = unpack("b", file.read(1))
textX.append(str(value*2+66.0))
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
valueXYZ = []
for k in range(0, XNumGrids):
for j in range(0, YNumGrids):
for i in range(0, ZNumGrids):
valueXYZ.append(valueZYX[i][j][k]) #
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
rootgrp = Dataset("test.nc", "w", format="NETCDF4")
#rootgrp = Dataset("test.nc", "a")
#fcstgrp = rootgrp.createGroup("forecasts") lon = rootgrp.createDimension("lon", XNumGrids)
lat = rootgrp.createDimension("lat", YNumGrids)
alt = rootgrp.createDimension("alt", ZNumGrids) lon = rootgrp.createVariable("lon", "f8", ("lon",))
lat = rootgrp.createVariable("lat", "f8", ("lat",))
alt = rootgrp.createVariable("alt", "f8", ("alt",)) #val = rootgrp.createVariable("val","f4",("zz","yy","xx",))
val = rootgrp.createVariable("val","f4",("lon","lat","alt",)) #
rootgrp.description = dataName
rootgrp.history = "创建时间: " + time.strftime('%Y-%m-%d %X', time.localtime())
rootgrp.Source_Software = "SmartMap"
#
lon.units = "degrees_east"
lon.long_name = "longitude coordinate"
lon.standard_name = "longitude"
#
lat.units = "degrees_north"
lat.long_name = "latitude coordinate"
lat.standard_name = "latitude"
#
alt.units = "m"
alt.long_name = "altitude"
alt.standard_name = "heigh"
#
val.long_name = "value"
val.esri_pe_string = 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]'
val.coordinates = "lon lat alt"
val.units = "Degree"
val.missing_value = -9999 #interval = 0.009999999776482582
interval = 0.01
#x = numpy.arange(-90,91,2.5) x = []
for i in range(0, XNumGrids):
x.append(StartLon + i * round(XReso, 3))
#x = numpy.array(x)
lon[:] = x #
#y = numpy.arange(-180,180,2.5)
y = []
for i in range(0, YNumGrids):
y.append(StartLat - i * round(YReso, 3))
#y = numpy.array(y)
lat[:] = y
# z = []
for i in range(0, ZNumGrids):
z.append(ZhighGrids[i])
#z = numpy.array(z)
alt[:] = z
# #kk = uniform(size=(2,3,4,5))
#print(kk) #val[::]=valueZYX
val[::] = valueXYZ #
rootgrp.close()

Python解析SWAN气象雷达数据--(解析、生成ASCII、Image、netCDF)的更多相关文章

  1. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(1)

    一.数据类型及解析方式 一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值.内容一般分为两部分,非结构化的数据 和 结构化的数据. 非结构化数据:先有数据,再有结构, 结构化数 ...

  2. python爬虫---爬虫的数据解析的流程和解析数据的几种方式

    python爬虫---爬虫的数据解析的流程和解析数据的几种方式 一丶爬虫数据解析 概念:将一整张页面中的局部数据进行提取/解析 作用:用来实现聚焦爬虫的吧 实现方式: 正则 (针对字符串) bs4 x ...

  3. 数据解析_bs进行数据解析

    1.bs4进行数据解析 数据解析的原理 1.标签定位 2.提取标签,标签属性中存储的数据值 bs4数据解析的原理 1.实例化一个BeautifulSoup对象,并且将页面源码数据加载到该对象中 2.通 ...

  4. Python爬虫之三种数据解析方式

    一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...

  5. 05 Python网络爬虫的数据解析方式

    一.爬虫数据解析的流程 1.指定url 2.基于requests模块发起请求 3.获取响应中的数据 4.数据解析 5.进行持久化存储 二.解析方法 (1)正则解析 (2)bs4解析 (3)xpath解 ...

  6. Unity3d-XML文件数据解析&JSON数据解析

    1.XML文件数据解析:(首先须要导入XMLParser解析器,The latest released download from:http://dev.grumpyferret.com/unity/ ...

  7. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(2)

    上半部分内容链接 : https://www.cnblogs.com/lowmanisbusy/p/9069330.html 四.json和jsonpath的使用 JSON(JavaScript Ob ...

  8. 如何使用fastJson来解析JSON格式数据和生成JSON格式数据

    由于项目用到了JSON格式的数据,在网上搜索到了阿里的fastjson比较好用,特此记录fastjson用法,以备以后查询之用. decode: 首先创建一个JSON解析类: public class ...

  9. python+jinja2实现接口数据批量生成工具

    在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢. 答案是肯定的! ...

随机推荐

  1. eclipse 使用prolog编程

    第一步:在电脑上安装swi-prolog 相应环境下载地址http://www.swi-prolog.org/download/stable 第二步: eclipse-help-install new ...

  2. 使用ie的filter来解决rgba在IE8下没有效果的问题

    使用ie的filter来解决rgba在IE8下没有效果的问题,css代码如下: background: rgba(255,255,255,0.1); filter:progid:DXImageTran ...

  3. C#中ExecuteReader、ExecuteNonQuery、ExecuteScalar、SqlDataReader、SqlDataAdapter的区别

    ExecuteNonQuery()执行命令对象的SQL语句,返回一个int 类型的变量,返回数据库操作之后影响的行数.适合用来验证对数据库进行增删改的情况. 2.ExecuteScalar()也可以执 ...

  4. 【bzoj5180】[Baltic2016]Cities 斯坦纳树

    这题一看显然是一个裸的斯坦纳树 我们用$f[i][j]$表示经过的路径中包含了状态$i$所表示的点,且连接了$j$号点的最短路径. 显然,$f[i][j]=min\{f[i$^$k][j]+f[k][ ...

  5. 5、xamarin.android 中如何对AndroidManifest.xml 进行配置和调整

    降低学习成本是每个.NET传教士义务与责任. 建立生态,保护生态,见者有份. 我们在翻看一些java的源码经常会说我们要在AndroidManifest.xml 中添加一些东西.而我们使用xamari ...

  6. Impala配置HA-Nginx

    Impala的高可用配置,官方的例子用的是Haproxy,考虑到nginx配置简单,使用人群广泛,再加上nginx1.9以后支持TCP的负载均衡,所以选用nginx. nginx安装:yum inst ...

  7. Java后台 解析JSON的几个方法

    1.对象转JSON对象. public static void main(String[] args) { Domain demo = new Domain( "在线JSON校验格式化工具 ...

  8. CentOS7 配置 Redis Sentinel主从集群配置

    Redis Sentinel主从集群 环境.准备 slave配置 sentinel配置 测试 C#连接Redis Sentinel 1.环境.准备 单实例3台CentOS7服务器,IP地址.: 192 ...

  9. golang闭包实现递归

    func main() { for i := 1; i < 30; i++ { fmt.Println(Fibonacci(i)) } } func Fibonacci(n int) int { ...

  10. jQuery操纵cookie(原生javascript处理cookie)

    jQuery也是可以操作cookie的 1.首先下载jQuery.js 以及 jquery.cookie.js 这两个文件 2.安装(其实就是引用) <html>       <he ...