http://codeforces.com/problemset/problem/940/C

And where the are the phone numbers?

You are given a string s consisting of lowercase English letters and an integer k. Find the lexicographically smallest string t of length k, such that its set of letters is a subset of the set of letters of s and s is lexicographically smaller than t.

It's guaranteed that the answer exists.

Note that the set of letters is a set, not a multiset. For example, the set of letters of abadaba is {a, b, d}.

String p is lexicographically smaller than string q, if p is a prefix of q, is not equal to q or there exists i, such that pi < qi and for all j < i it is satisfied that pj = qj. For example, abc is lexicographically smaller than abcd , abd is lexicographically smaller than abec, afa is not lexicographically smaller than aband a is not lexicographically smaller than a.

Input

The first line of input contains two space separated integers n and k (1 ≤ n, k ≤ 100 000) — the length of s and the required length of t.

The second line of input contains the string s consisting of n lowercase English letters.

Output

Output the string t conforming to the requirements above.

It's guaranteed that the answer exists.

Examples
input

Copy
3 3
abc
output
aca
input

Copy
3 2
abc
output
ac
input

Copy
3 3
ayy
output
yaa
input

Copy
2 3
ba
output
baa
Note

In the first example the list of strings t of length 3, such that the set of letters of t is a subset of letters of sis as follows: aaa, aab, aac, aba, abb, abc, aca, acb, .... Among them, those are lexicographically greater than abc: aca, acb, .... Out of those the lexicographically smallest is aca.

思维题

1.s.size()>len 直接往后加最小的字符

2.其他情况,从后往前找(不是最大字符)的第一个字符,将它改为字典序下一个字符,然后将它后面的字符全改为最小字符

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); }
template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); }
template <class T> inline T min(T a, T b, T c, T d) {
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d) {
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int maxn = ;
// name*******************************
string s, s1;
int len;
vector<char> vec;
bool vis[maxn];
int n;
// function****************************** //***************************************
int main() {
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin >> n >> len;
cin>>s;
For(i, , s.size() - ) {
if (vis[s[i]] == ) {
vec.pb(s[i]);
}
}
sort(vec.begin(), vec.end());
s1 = s;
// cout<<len<<" "<<s1.size()<<endl;
if (len > s1.size()) {
cout<<s1;
For(i, , len - s1.size())cout<<vec.front();
return ;
}
s1 = s.substr(, len);
FFor(i, len - , ) {
char c = s1[i];
if (c == vec.back())
continue;
FFor(j, vec.size() - , ) {
if (c == vec[j]) {
s1[i] = vec[j + ];
For(k, i + , len - ) { s1[k] = vec.front(); }
cout << s1;
return ;
}
}
} return ;
}
 

C. Phone Numbers的更多相关文章

  1. Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range

    在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...

  2. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  3. [LeetCode] Add Two Numbers II 两个数字相加之二

    You are given two linked lists representing two non-negative numbers. The most significant digit com ...

  4. [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字

    Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...

  5. [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  6. [LeetCode] Bitwise AND of Numbers Range 数字范围位相与

    Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...

  7. [LeetCode] Valid Phone Numbers 验证电话号码

    Given a text file file.txt that contains list of phone numbers (one per line), write a one liner bas ...

  8. [LeetCode] Consecutive Numbers 连续的数字

    Write a SQL query to find all numbers that appear at least three times consecutively. +----+-----+ | ...

  9. [LeetCode] Compare Version Numbers 版本比较

    Compare two version numbers version1 and version1.If version1 > version2 return 1, if version1 &l ...

  10. [LeetCode] Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

随机推荐

  1. Spring Boot fastJSON的使用

    springBoot,默认使用的json解析框架是Jackson. 虽然jackson能够满足json的解析,如果想使用熟悉的alibaba的fastjon,我们只需要在pom文件中配置maven依赖 ...

  2. 转:xdebug在linux下的安装教程

    原文:xdebug在linux下的安装教程 [注意,本人是PHP7.1.7 Nginx ,第7步没有做,但是xdebug.so就已经在PHP的扩展文件夹里面了.目录是phpinfo的extension ...

  3. <VS2010>混合模式程序集是针对“v2.0”版的运行时生成的,在没有配置其他信息的情况下,无法在 4.0 运行时中加载该程序集

    在把以前写的代码生成工具从原来的.NET3.5升级到.NET4.0时,将程序集都更新后,一运行程序在一处方法调用时报出了一个异常: 混合模式程序集是针对“v2.0.50727”版的运行时生成的,在没有 ...

  4. 专访周金可:我们更倾向于Greenplum来解决数据倾斜的问题

    周金可,就职于听云,维护MySQL和GreenPlum的正常运行,以及调研适合听云业务场景的数据库技术方案. 听云周金可 9月24日,周金可将参加在北京举办的线下活动,并做主题为<GreenPl ...

  5. 你真的了解View的坐标吗?

    闲聊 View,对我们来说在熟悉不过了,从接触 Android 开始,我们就一直在接触 View,界面当中到处都是 View,比如我们经常用到的 TextView,Button,LinearLayou ...

  6. String 类型

    一.不可变 一个 String 类型的值是不可以改变的,比如,String china = "中国",“中国”这个字符串从它创建开始直到销毁都是不可改变的. 二.字符串常量池 字面 ...

  7. VisualSVN server搭建装配和指定IP或域名

    在主机商边绑定A记录即可

  8. CSS 小结笔记之盒子模型

    网页标签可以看成是一个个盒子,页面设计就像垒积木一样,在网页中将盒子摆好显示出来.在浏览器中可以很清楚的去看到一个标签的盒子,具体方法如下: 打开浏览器的开发人员工具,在Elements中选中一个标签 ...

  9. [IIS] [PHP] 500.19 随机出现

    微信确认有BUG: https://support.microsoft.com/en-au/help/3007507/-http-error-500.19-error-when-you-browse- ...

  10. Script:when transaction will finish rollback

    ------------------------------------------------------------------------------- -- -- Script: rollin ...