1087. All Roads Lead to Rome (30)

Indeed there are many different tourist routes from our city to Rome. You are supposed to find your clients the route with the least cost while gaining the most happiness.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<=N<=200), the number of cities, and K, the total number of routes between pairs of cities; followed by the name of the starting city. The next N-1 lines each gives the name of a city and an integer that represents the happiness one can gain from that city, except the starting city. Then K lines follow, each describes a route between two cities in the format "City1 City2 Cost". Here the name of a city is a string of 3 capital English letters, and the destination is always ROM which represents Rome.

Output Specification:

For each test case, we are supposed to find the route with the least cost. If such a route is not unique, the one with the maximum happiness will be recommended. If such a route is still not unique, then we output the one with the maximum average happiness -- it is guaranteed by the judge that such a solution exists and is unique.

Hence in the first line of output, you must print 4 numbers: the number of different routes with the least cost, the cost, the happiness, and the average happiness (take the integer part only) of the recommended route. Then in the next line, you are supposed to print the route in the format "City1->City2->...->ROM".

Sample Input:

6 7 HZH
ROM 100
PKN 40
GDN 55
PRS 95
BLN 80
ROM GDN 1
BLN ROM 1
HZH PKN 1
PRS ROM 2
BLN HZH 2
PKN GDN 1
HZH PRS 1

Sample Output:

3 3 195 97
HZH->PRS->ROM

分析:这是一道图的遍历题目,但是涉及到多个判断标准。首先,路径长度(花费)最小。其次,获得的happy值最大。再次,happy的平均值最大(不包括开始的城市).虽然增加了判断标准,但是做法还是一样的。该题基于图的深度遍历DFS来做,每次遍历到目的节点时更新判断标准。另外,图的DFS与数的DFS不同的地方在于,图的DFS需要增加一个vis数组用于表示某个节点是否访问过,而树不需要,因为树是不含环的。另外,该题给的是字符串表示的节点,我们可以用map来实现字符串和int型之间的映射,方便编写代码。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
using namespace std; const int maxn=;
const int INF=1e9; int g[maxn][maxn];
int happy[maxn];
int vis[maxn]={false}; map<string ,int> str2int;
map<int,string> int2str; int st,ed;
vector<int> tmppath,path;
int min_cost=INF;
int max_happy=;
int avg_happy=;
int lest_num=; int n; void dfs(int s,int cost,int hy)
{
vis[s]=true;
if(s==ed)
{
if(cost<min_cost)
{
min_cost=cost;
path=tmppath;
lest_num=;
max_happy=hy;
avg_happy=hy/(path.size()-);
}
else if(cost==min_cost)
{
lest_num+=;
if(hy>max_happy)
{
max_happy=hy;
path=tmppath;
avg_happy=hy/(path.size()-);
}
else if(hy==max_happy)
{
if(tmppath.size()<path.size()&&tmppath.size()>)
{
path=tmppath;
int down=path.size()-;
avg_happy=hy/down;
}
}
}
return ;
}
for(int v=;v<n;v++)
{
if(vis[v]==false&&g[s][v]!=INF)
{
tmppath.push_back(v); dfs(v,cost+g[s][v],hy+happy[v]);
vis[v]=false;
tmppath.pop_back();
}
}
} int main()
{
fill(g[],g[]+maxn*maxn,INF);
int k;
string begin;
cin>>n>>k>>begin;
str2int.insert(make_pair(begin,));
int2str.insert(make_pair(,begin));
for(int i=;i<n;i++)
{
string str;
int h;
cin>>str>>h;
if(str=="ROM") ed=i;
str2int.insert(make_pair(str,i));
int2str.insert(make_pair(i,str));
happy[i]=h;
}
for(int i=;i<k;i++)
{
string u,v;
int cost;
cin>>u>>v>>cost;
int uu,vv;
uu=str2int[u];
vv=str2int[v];
g[uu][vv]=g[vv][uu]=cost;
}
tmppath.push_back();
dfs(,,);
cout<<lest_num<<" "<<min_cost<<" "<<max_happy<<" "<<avg_happy<<endl; for(int i=;i<path.size();i++)
{
if(i>) cout<<"->";
cout<<int2str[path[i]];
}
}

[图的遍历&多标准] 1087. All Roads Lead to Rome (30)的更多相关文章

  1. 1087. All Roads Lead to Rome (30)

    时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Indeed there are many different ...

  2. 1087 All Roads Lead to Rome (30)(30 分)

    Indeed there are many different tourist routes from our city to Rome. You are supposed to find your ...

  3. PAT (Advanced Level) 1087. All Roads Lead to Rome (30)

    暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...

  4. 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)

    题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...

  5. PAT甲级练习 1087 All Roads Lead to Rome (30分) 字符串hash + dijkstra

    题目分析: 这题我在写的时候在PTA提交能过但是在牛客网就WA了一个点,先写一下思路留个坑 这题的简单来说就是需要找一条最短路->最开心->点最少(平均幸福指数自然就高了),由于本题给出的 ...

  6. PAT 1087 All Roads Lead to Rome[图论][迪杰斯特拉+dfs]

    1087 All Roads Lead to Rome (30)(30 分) Indeed there are many different tourist routes from our city ...

  7. pat1087. All Roads Lead to Rome (30)

    1087. All Roads Lead to Rome (30) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  8. PAT 1087 All Roads Lead to Rome

    PAT 1087 All Roads Lead to Rome 题目: Indeed there are many different tourist routes from our city to ...

  9. PAT甲级1087. All Roads Lead to Rome

    PAT甲级1087. All Roads Lead to Rome 题意: 确实有从我们这个城市到罗马的不同的旅游线路.您应该以最低的成本找到您的客户的路线,同时获得最大的幸福. 输入规格: 每个输入 ...

随机推荐

  1. kali linux修改更新源及更新

    1.修改sources.list源文件: leafpad /etc/apt/sources.list #aliyun 阿里云 deb http://mirrors.aliyun.com/kali ka ...

  2. 关于Quartus+Modelsim 门级仿真 Warning (vopt-2216) Cannot find instance 'NA' specified in sdf.的解决办法

    本文操作环境:Win 7 32位系统, Quartus II 11.1 ,Modelsim SE 10.1a 在Quartus II中调用Modelsim SE做Gate Level Simulait ...

  3. 马尔可夫毯(Markov blanket)

    马尔可夫毯(Markov blanket) 马尔科夫毯,是满足如下特性的一个最小特征子集:一个特征在其马尔科夫毯条件下,与特征域中所有其他特征条件独立.设特征T的马尔科夫毯为MB(T),则上述可表示为 ...

  4. JavaEE笔记(八)

    第一个Spring Student(学生) bean package com.my.bean; import java.io.Serializable; public class Student im ...

  5. 前端- html -总结

    html概述 head标签 title 显示网站的标题 meta 提供有关页面的原信息 link 链接css资源文件.网站图标 style 定义内部样式表 script 链接脚本js文件 body标签 ...

  6. [FJOI2015]火星商店问题

    [FJOI2015]火星商店问题 神仙线段树分治...不过我不会. 这题用线段树套可持久化Trie还是能写的. 常数有点大,洛谷垫底水平. // luogu-judger-enable-o2 #inc ...

  7. eclipse项目转移至IDEA与IDEA tomcat报错(idea自带tomcat版本太高)与war包部署到win服务器与idea提交git的总结

    eclipse导出项目到idea时,不要导出target: idea打开eclipse项目后,出现junit找不到的问题,原因是jar包缺失,而maven配置的低版本的junit也显示找不到,解决办法 ...

  8. 网络设备重的loopback接口

    回环接口在我们做试验的过程有典型的应用,几乎可以离不开它,一个虚拟的接口,给我带来了很大的方便,有了回环接口,你可以不用为你的PC,来添加第二块物理网卡,就可以完成VM,服务器搭建,群集,VPN等试验 ...

  9. GGTalk——C#开源即时通讯系统源码介绍系列(一)

    坦白讲,我们公司其实没啥技术实力,之所以还能不断接到各种项目,全凭我们老板神通广大!要知道他每次的饭局上可都是些什么人物! 但是项目接下一大把,就凭咱哥儿几个的水平,想要独立自主.保质保量保期地一个个 ...

  10. Spring学习(十八)----- Spring AOP+AspectJ注解实例

    我们将向你展示如何将AspectJ注解集成到Spring AOP框架.在这个Spring AOP+ AspectJ 示例中,让您轻松实现拦截方法. 常见AspectJ的注解: @Before – 方法 ...