优化中的subgradient方法
哎。刚刚submit上paper比較心虚啊。无心学习。还是好好码码文字吧。
subgradient介绍
subgradient中文名叫次梯度。和梯度一样,全然能够多放梯度使用。至于为什么叫子梯度,是由于有一些凸函数是不可导的,没法用梯度。所以subgradient就在这里使用了。
注意到。子梯度也是求解凸函数的。仅仅是凸函数不是处处可导。
f:X→R是一个凸函数,X∈Rn是一个凸集。
若是f在x′处∇f(x′)可导。考虑一阶泰勒展开式:
能够得到f(x)的一个下届(f(x)是一个凸函数)
若是f(x)在x′处不可导,仍然。能够得到一个f(x)的下届
这个g就叫做f(x)的子梯度。g∈Rn
非常明显。在一个点会有不止一个次梯度,在点x全部f(x)的次梯度集合叫做此微分∂f(x)
我们能够看出,当f(x)是凸集而且在x附近有界时,∂f(x)是非空的,而且∂f(x)是一个闭凸集。
次梯度性质
满足:
1)scaling:
2)addition:
3)point-wise maximum:f(x)=maxi=1,...,mfi(x)而且fi(x)是可微的,那么:
即全部该点函数值等于最大值的函数的梯度的凸包。
在非约束最优化问题中。要求解一个凸函数f:Rn→R的最小值
非常显然,若是f可导。那么我们仅仅须要求解导数为0的点
当f不可导的时候,上述条件就能够一般化成
也即0满足次梯度的定义
以下是次梯度法的一般方法:
1.t=1选择有限的正的迭代步长{αt}∞t=1
2.计算一个次梯度g∈∂f(xt)
3.更新xt+1=xt−αtgt
4.若是算法没有收敛。则t=t+1返回第二步继续计算
次梯度方法性质:
1.简单通用性:就是说第二步中,∂f(xt)不论什么一个次梯度都是能够的.
2.收敛性:仅仅要选择的步长合适。总会收敛的
3.收敛慢:须要大量的迭代才干收敛
4.非单调收敛:−gt不须要是下降方向。在这样的情况下,不能使用线性搜索选择合适的αt
5.没有非常好的停止准则
对于不同步长的序列的收敛结果
最好还是设ftbest=min{f(x1),..,f(xt)}是t次迭代中的最优结果
1.步长和不可消时(Non-summable diminishing step size):
limt→∞αt=0 而且∑∞t=1αt==∞
这样的情况能够收敛到最优解:limt→∞ftbest−f(x∗)=0
2.Constant step size:
αt=γ,where γ>0
收敛到次优解:limt→∞ftbest−f(x∗)≤αG2/2
3.Constant step length:
αt=γ||gt||(i.e. ||xt+1−xt||=γ),||g||≤G,∀g∈∂f
能够收敛到次优解limt→∞ftbest−f(x∗)≤γG/2
4.Polyak’s rule: αt=f(xt)−f(x∗)||gt||2
若是最优值f(x∗)可知则能够用这样的方法。
不等式约束的凸二次优化问题
问题formulate
一个不等式约束的凸二次优化问题能够表示为:
注意到ξi≥max(0,1−yi(wTxi+b)),而且当目标函数取得最优的时候,这里的等号是成立的,所以能够进行取代:
ξi=max(0,1−yi(wTxi+b))
所以就能够将这个二次悠哈问题改写成一个非约束凸优化问题
问题求解
由于
是可微的,而且
∂wf0(w,b)=w, ∂bf0(w,b)=0
函数fi(w,b)=max0,1−yi(wTxi+b)是一个点最大值。所以其次微分能够写作,全部active function的梯度的convex combination
i-th function | ∂wfi(w,b) | ∂bfi(w,b) |
---|---|---|
I+={i|yi(wTxi+b)>1} | 0 | 0 |
I0={i|yi(wTxi+b)=1} | Co{0,−yixi} | Co{0,−yi} |
I−={i|yi(wTxi+b)<1} | −yixi | −yi |
所以次微分能够写作∂f(w,b)=∂f0(w,b)+C∑mi=1∂fi(w,b)能够使用參数话的表示方法,设0≤βi≤1,i∈I0,所以就有g=[w′b′]∈∂f(x)
优化中的subgradient方法的更多相关文章
- 拓扑优化中SIMP方法与水平集方法有何优缺点,水平集法变换到高维,不是更复杂了
作者:周平章链接:https://www.zhihu.com/question/52008623/answer/187927508来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...
- jquery 中一些 特殊方法 的特殊使用 一览表
cnblogs的页面, 一种是管理页面, 是随笔的列表 a full list of essays. 另一种是 首页. 要搜索文档的话, 就使用 "首页"的那种方式. 一个jque ...
- 优化PHP程序的方法(温故知新)
1. If a method c++an be static, declare it static. Speed improvement is by a factor of 4. 如果一个方法可静态化 ...
- Java String类中的intern()方法
今天在看一本书的时候注意到一个String的intern()方法,平常没用过,只是见过这个方法,也没去仔细看过这个方法.所以今天看了一下.个人觉得给String类中加入这个方法可能是为了提升一点点性能 ...
- [转]优化PHP程序的方法
1. If a method c++an be static, declare it static. Speed improvement is by a factor of 4. 如果一个方法可静态化 ...
- 网站静态化处理—web前端优化—中(12)
网站静态化处理—web前端优化—中(12) Web前端很多优化原则都是从如何提升网络通讯效率的角度提出的,但是这些原则使用的时候还是有很多陷阱在里面,如果我们不能深入理解这些优化原则背后所隐藏的技术原 ...
- 《JS权威指南学习总结--7.9 ES5中的数组方法》
内容要点: ES5中定义了9个新的数组方法来遍历.映射.过滤.检测.简化和搜索数组. 概述:首先,大多数方法的第一个参数接收一个函数,并且对数组的每个元素(或一个元素)调用一次该函数. 如果是稀疏数组 ...
- MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?
本文出处:http://www.cnblogs.com/wy123/p/7003157.html 最近无意间看到一个MySQL分页优化的测试案例,并没有非常具体地说明测试场景的情况下,给出了一种经典的 ...
随机推荐
- 20165203 实验一 Java开发环境的熟悉
实验内容及步骤 实验一 Java开发环境的熟悉-1 建立有自己学号的实验目录. 通过vim Hello.java编辑代码. 编译.运行Hello.java代码. 实验一 Java开发环境的熟悉-2 新 ...
- 【读书笔记】Android的Ashmem机制学习
Ashmem是安卓在linux基础上添加的驱动模块,就是说安卓有linux没有的功能. Ashmem模块在内核层面上实现,在运行时库和应用程序框架层提供了访问接口.在运行时库层提供的是C++接口,在应 ...
- 关于ARM指令那些你必须知道的东西
1.32位ARM指令每一位都有其作用,具体如下: 低12为第二操作数, 12~15位为目的寄存器, 16~19位为第一操作数, 20~27就是操作码, 28~31就是条件域. 2.多寄存器load和s ...
- Kylin使用笔记-1: 安装
2016年1月14日 9:57:23 星期四 背景介绍 Apache Kylin是一个开源的分布式分析引擎,提供Hadoop之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最 ...
- USACO 4.3 Buy Low, Buy Lower
Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...
- 在控制台连接oracle
Microsoft Windows [版本 6.1.7601]版权所有 (c) 2009 Microsoft Corporation.保留所有权利. C:\Users\lijt>sqlplus ...
- C# 操作 access 数据库
随笔: (1) 命名空间 using System.Data.OleDb; (2) 连接字符串 private staticstring connStr = @"Provider= ...
- Xamarin无法调试Android项目
Xamarin无法调试Android项目 项目可以正常编译,生成APK,也可以通过右键菜单部署.但是一旦开启调试,就报错.错误信息如下: 没有为此解决方案配置选中要生成的项目 出现这种问题是因 ...
- Opencv学习笔记5:Opencv处理彩虹图、铜色图、灰度反转图
一.概述: 人类能够观察到的光的波长范围是有限的,并且人类视觉有一个特点,只能分辨出二十几种灰度,也就是说即使采集到的灰度图像分辨率超级高,有上百个灰度级,但是很遗憾,人们只能看出二十几个,也就是说信 ...
- Java设计模式GOF之6大设计原则
Java设计模式GOF之6大设计原则原则 1.开闭原则(Open Close Principle) 一个软件实体如类.模块和函数应该对扩展开放,对修改关闭. 开闭原则是面向对象的可复用设计的第一块基石 ...