Storm Windowing storm滑动窗口简介
Storm Windowing
简介
Storm可同时处理窗口内的所有tuple。窗口可以从时间或数量上来划分,由如下两个因素决定:
- 窗口的长度,可以是时间间隔或Tuple数量;
- 滑动间隔(sliding Interval),可以是时间间隔或Tuple数量;
要确保topo的过期时间大于窗口的大小加上滑动间隔
Sliding Window:滑动窗口
按照固定的时间间隔或者Tuple数量滑动窗口。
- 如果滑动间隔和窗口大小一样则等同于滚窗,
- 如果滑动间隔大于窗口大小则会丢失数据,
- 如果滑动间隔小于窗口大小则会窗口重叠。
Tumbling Window:滚动窗口
元组被单个窗口处理,一个元组只属于一个窗口,不会有窗口重叠。
根据我自己的经验其实一般用滚动就可以了
构造builder的时候支持以下的配置
(时间和数量的排列组合):
- withWindow(Count windowLength, Count slidingInterval)
滑窗 窗口长度:tuple数, 滑动间隔: tuple数 - withWindow(Count windowLength)
滑窗 窗口长度:tuple数, 滑动间隔: 每个tuple进来都滑 - withWindow(Count windowLength, Duration slidingInterval)
滑窗 窗口长度:tuple数, 滑动间隔: 时间间隔 - withWindow(Duration windowLength, Duration slidingInterval)
滑窗 窗口长度:时间间隔, 滑动间隔: 时间间隔 - withWindow(Duration windowLength)
滑窗 窗口长度:时间间隔, 滑动间隔: 每个tuple进来都滑 - withWindow(Duration windowLength, Count slidingInterval)
滑窗 窗口长度:时间间隔, 滑动间隔: 时间间隔 - withTumblingWindow(BaseWindowedBolt.Count count)
滚窗 窗口长度:Tuple数 - withTumblingWindow(BaseWindowedBolt.Duration duration)
滚窗 窗口长度:时间间隔
Tuple时间戳和乱序
storm支持追踪源数据的时间戳。
Event time 和Process time
默认的时间戳是处理元组时的bolt窗口生成的,
Event time,事件时间,通常这个时间会带在Tuple中;
Process time,到某一个处理环节的时间。
举例:A今天早上9点告诉B,说C昨天晚上9点在滨江国际;
这条信息中,可以认为C在滨江国际的Event time是昨天晚上9点,B接收到这条信息的时间,即Process time,是今天早上9点。
配置时间戳字段(timestamp field)
windows按照时间划分时,默认是Process time,也可以指定为Tuple中的Event time。
如果以Event time来划分窗口:
- Tuple落入到哪个窗口,是看tuple里的Event time。
- 窗口向后推进,主要依靠Event time的增长;
public BaseWindowedBolt withTimestampField(String fieldName)
延时(lag)和水位线(watermark)
从当前最后一条数据算起,往前减去lag,得到一个时间,这个时间就是watermark;
认为watermark之前的数据都已经到了。收到06:01:00的数据时,认为06:00:00的数据都到了。给他们入window。
这样实际是一个延时处理,等到了06:01:00时,我才开始将06:00:00的数据放入窗口。
如果很不巧,06:00:00的数据在06:01:00之后,lag为60s,不好意思,进不了窗口。此数据不会被处理,并且会在worker的日志中加一行INFO信息。
public class SlidingWindowBolt extends BaseWindowedBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(TupleWindow inputWindow) {
for(Tuple tuple: inputWindow.get()) {
// do the windowing computation
...
}
// emit the results
collector.emit(new Values(computedValue));
}
}
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 1);
builder.setBolt("slidingwindowbolt",
new SlidingWindowBolt().withWindow(new Count(30), new Count(10)),
1).shuffleGrouping("spout");
Config conf = new Config();
conf.setDebug(true);
conf.setNumWorkers(1);
StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology());
}
Storm Windowing storm滑动窗口简介的更多相关文章
- TCP超时重传、序列号、滑动窗口简介
文章目录 12 TCP:传输控制协议(初步) 12.1 引言 12.1.1 ARQ和重传 12.1.2 分组窗口和滑动窗口 12.1.3 变量窗口:流量控制和拥塞控制 12.1.4 变量窗口:设置重传 ...
- storm 1.0版本滑动窗口的实现及原理
滑动窗口在监控和统计应用的场景比较广泛,比如每隔一段时间(10s)统计最近30s的请求量或者异常次数,根据请求或者异常次数采取相应措施.在storm1.0版本之前,没有提供关于滑动窗口的实现,需要开发 ...
- Storm 实现滑动窗口计数和TopN排序
计算top N words的topology, 用于比如trending topics or trending images on Twitter. 实现了滑动窗口计数和TopN排序, 比较有意思, ...
- storm滑动窗口
Window滑动方式: 没有数据不滑动windowLength:窗口的时间长度/tuple个数slidingInterval:滑动的时间间隔/tuple个数 withWindow(Duration w ...
- TCP 滑动窗口的简介
TCP 滑动窗口的简介 POSTED BY ADMIN ON AUG 1, 2012 IN FLOWS34ARTICLES | 0 COMMENTS TCP的滑动窗口主要有两个作用,一是提供TCP的可 ...
- Spark-Streaming之window滑动窗口应用
Spark-Streaming之window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作.每次掉落在窗口内的RDD的数据,会被 ...
- 57、Spark Streaming: window滑动窗口以及热点搜索词滑动统计案例
一.window滑动窗口 1.概述 Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作.每次掉落在窗口内的RDD的数据, 会被聚合起来执行计算操作 ...
- Sentinel滑动窗口算法
在前面搞清楚了Sentinel的使用后,大致理了一下Sentinel的责任链,搞清楚了这个,基本就已经梳理清楚sentinel-core模块的大部分内容,顺着这条链路可以继续梳理很多东西. 知其然.知 ...
- 滑动窗口法——Leetcode例题
滑动窗口法--Leetcode例题(连更未完结) 1. 方法简介 滑动窗口法可以理解为一种特殊的双指针法,通常用来解决数组和字符串连续几个元素满足特殊性质问题(对于字符串来说就是子串).滑动窗口法的显 ...
随机推荐
- cent6.4使用
让centos能够上网 刚安装了时,是不能联网的,我们可以通过以下命令更改即可: cd /etc/sysconfig/network-script vi ifcfg-eth0 更改其中的ONBOOT= ...
- video.js-H5视频播放库
video.js是一款很流行的html5视频播放插件.很适合在移动端播放视频(比如微信网页),功能强大,且支持降级到flash,兼容ie8.官网:http://videojs.com/ git& ...
- php-fpm优化方法详解
php-fpm优化方法 php-fpm存在两种方式,一种是直接开启指定数量的php-fpm进程,不再增加或者减少:另一种则是开始时开启一定数量的php-fpm进程,当请求量变大时,动态的增加php-f ...
- JSON格式序列化与反序列化(List、XML)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.I ...
- jsonp 实例
一直以为很复杂吧?其实很简单,简单到你不敢相信 1.前端引好jquery文件 2.前端代码: $.ajax({ url: 'http://www.xxxxxxxx.com/expand.a ...
- 初识java泛型
1 协变数组类型(covariant array type) 数组的协变性: if A IS-A B then A[] IS-A B[] 也就是说,java中的数组兼容,一个类型的数组兼容他的子类类型 ...
- How to use Bundle&Minifier and bundleconfig.json in ASP.NET Core
引言 我们在ASP.NET MVC 中经常会用到 bundleConfig.cs 文件来进行我们 css 和 js 的绑定, 那么在ASP.NET Core 中我们应该如何使用呢? 步骤一 在 Vis ...
- python3 -pip
https://docs.python.org/3/installing/ ===== pip is the preferred installer program. Starting with Py ...
- Mac挂载NTFS移动硬盘读取VMware虚拟机文件
一.Mac 挂载NTFS移动硬盘进行读写操作 (Read-only file system) 注意如下图所示先卸载,然后按照下图的命令进行挂载.然后cd /opt/003_vm/ &&am ...
- infoq 微信后台存储架构
infoq 上微信后台存储架构 视频很是值得认真一听,大概内容摘要如下: 主要内容:同城分布式强一致,园区级容灾KV存储系统 - sync 序列号发生器 移动互联网场景下,频繁掉线重连,使用 ...