#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
#define N 300005
using namespace std;
const int ni = ;
const int p = ;
ll pw(ll x,int y)
{
ll lst=;
while(y)
{
if(y&)lst=(lst*x)%p;
y>>=;
x=(x*x)%p;
}
return lst;
}
int n,m;
int c[N],a[N],b[N],R[N];
int invb[N];
int ji[N],jie[N],nini[N];
int tmp[N];
void fft(int *a,int n,int f)
{
for(int i=;i<n;i++)if(R[i]>i)swap(a[i],a[R[i]]);
for(int i=;i<n;i<<=)
{
int wn=pw(ni,((p-)/(i<<)*f+p-)%(p-));
for(int j=;j<n;j+=(i<<))
{
int w=;
for(int k=;k<i;k++,w=((ll)w*wn)%p)
{
int x=a[j+k];int y=((ll)a[j+i+k]*w)%p;
a[j+k]=(x+y)%p;a[j+k+i]=(x-y+p)%p;
}
}
}
if(f==-)
{
ll nii=pw(n,p-);
for(int i=;i<n;i++)a[i]=(ll)a[i]*nii%p;
}
return ;
}
void get_inv(int *a,int *b,int n)
{
if(n==)
{
b[]=pw(a[],p-);
return ;
}
get_inv(a,b,n>>);
for(int i=;i<n;i++)tmp[i]=a[i];
int l=;int nn=;
while(nn<n<<)nn<<=,l++;
for(int i=;i<nn;i++)R[i]=(R[i>>]>>)|((i&)<<(l-));
fft(tmp,nn,);fft(b,nn,);
for(int i=;i<nn;i++)
b[i]=((ll)b[i]*(-(ll)tmp[i]*b[i]%p+p))%p;
fft(b,nn,-);
memset(b+n,,sizeof(int)*n);
}
int main()
{
scanf("%d",&n);
int l=;
for(m=n,n=;n<=m;n<<=)l++;
nini[]=jie[]=ji[]=;
for(int i=;i<n;i++)jie[i]=((ll)jie[i-]*i)%p;
for(int i=;i<n;i++)
b[i]=pw(,((ll)i*(i-)>>)%(p-))*pw(jie[i],p-)%p;
for(int i=;i<n;i++)
c[i]=pw(,((ll)i*(i-)>>)%(p-))*pw(jie[i-],p-)%p;
get_inv(b,invb,n);
l++;int tp=n<<;
for(int i=;i<tp;i++)R[i]=(R[i>>]>>)|((i&)<<(l-));
fft(invb,tp,);
fft(c,tp,);
for(int i=;i<tp;i++)a[i]=(ll)invb[i]*c[i]%p;
fft(a,tp,-);
printf("%d\n",(ll)a[m]*jie[m-]%p);
return ;
}

NTT+多项式求逆的更多相关文章

  1. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  2. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  3. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  4. 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

    3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题 ...

  5. BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆

    不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...

  6. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  7. [BZOJ3456]城市规划:DP+NTT+多项式求逆

    写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...

  8. P4233-射命丸文的笔记【NTT,多项式求逆】

    正题 题目链接:https://www.luogu.com.cn/problem/P4233 题目大意 随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数. 对于每个\( ...

  9. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  10. luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法

    Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 # ...

随机推荐

  1. 高可用OpenStack(Queen版)集群-4.keystone集群

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  2. ResNet——Deep Residual Learning for Image Recognition

    1. 摘要 更深的神经网络通常更难训练,作者提出了一个残差学习的框架,使得比过去深许多的的网络训连起来也很容易. 在 ImageNet 数据集上,作者设计的网络达到了 152 层,是 VGG-19 的 ...

  3. Mac下基于testrpc和truffle的以太坊智能合约开发环境搭建

    原文地址:石匠的blog truffle是一个基于Javascript开发的一套智能合约开发框架,使用Solidity语言编写合约.truffle有一套自动的项目构建机制,集成了开发,测试和部署的各个 ...

  4. Oracle VM VirtualBox 无法卸载 更新 和修复

    好久没更新Oracle VM VirtualBox 突然发现不能更新了 提示要某个msi文件,回想起来好像是被某个清理垃圾的软件清理掉了. 于是根据提示的版本号网上搜了种子又把安装包下载回来 在命令行 ...

  5. 升级Xcode 10 后报错问题记录([CP] Copy Pods Resources)

    1.升级Xcode到Version 10.0 (10A255)后,运行已有项目,报如下错误: error: Multiple commands produce '/Users/galahad/Libr ...

  6. 关于手机端h5上传图片配合exif.min.js,processImg.js的使用

    首先这里有个new FileReader()的概念,这是h5新增的,用来把文件读入内存,并且读取文件中的数据.FileReader接口提供了一个异步API,使用该API可以在浏览器主线程中异步访问文件 ...

  7. java程序设计课程实验报告1

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计   班级:1353       姓名:陈都  学号:20135328 成绩:             指导 ...

  8. Ubuntu下开启mysql远程访问

    1. 开启数据库3306端口 首先,使用如下指令查看3306端口是否对外开放. netstat -an | grep 3306 tcp 0 0 127.0.0.1:3306 0.0.0.0:* LIS ...

  9. KMP算法之next数组的求解思路

    2.next数组的求解思路 本部分内容转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algo ...

  10. 1001. A+B Format (20)的解题思路以及多源代码文件的尝试编写

    前言 这几天刚学了多源代码文件的编译,因为想尝试使用一下这种方法,所以想用此编写这次作业的程序.正好可以learning by doing,在做当中学习新知识.(编译器为Dev-C++) github ...