#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
#define N 300005
using namespace std;
const int ni = ;
const int p = ;
ll pw(ll x,int y)
{
ll lst=;
while(y)
{
if(y&)lst=(lst*x)%p;
y>>=;
x=(x*x)%p;
}
return lst;
}
int n,m;
int c[N],a[N],b[N],R[N];
int invb[N];
int ji[N],jie[N],nini[N];
int tmp[N];
void fft(int *a,int n,int f)
{
for(int i=;i<n;i++)if(R[i]>i)swap(a[i],a[R[i]]);
for(int i=;i<n;i<<=)
{
int wn=pw(ni,((p-)/(i<<)*f+p-)%(p-));
for(int j=;j<n;j+=(i<<))
{
int w=;
for(int k=;k<i;k++,w=((ll)w*wn)%p)
{
int x=a[j+k];int y=((ll)a[j+i+k]*w)%p;
a[j+k]=(x+y)%p;a[j+k+i]=(x-y+p)%p;
}
}
}
if(f==-)
{
ll nii=pw(n,p-);
for(int i=;i<n;i++)a[i]=(ll)a[i]*nii%p;
}
return ;
}
void get_inv(int *a,int *b,int n)
{
if(n==)
{
b[]=pw(a[],p-);
return ;
}
get_inv(a,b,n>>);
for(int i=;i<n;i++)tmp[i]=a[i];
int l=;int nn=;
while(nn<n<<)nn<<=,l++;
for(int i=;i<nn;i++)R[i]=(R[i>>]>>)|((i&)<<(l-));
fft(tmp,nn,);fft(b,nn,);
for(int i=;i<nn;i++)
b[i]=((ll)b[i]*(-(ll)tmp[i]*b[i]%p+p))%p;
fft(b,nn,-);
memset(b+n,,sizeof(int)*n);
}
int main()
{
scanf("%d",&n);
int l=;
for(m=n,n=;n<=m;n<<=)l++;
nini[]=jie[]=ji[]=;
for(int i=;i<n;i++)jie[i]=((ll)jie[i-]*i)%p;
for(int i=;i<n;i++)
b[i]=pw(,((ll)i*(i-)>>)%(p-))*pw(jie[i],p-)%p;
for(int i=;i<n;i++)
c[i]=pw(,((ll)i*(i-)>>)%(p-))*pw(jie[i-],p-)%p;
get_inv(b,invb,n);
l++;int tp=n<<;
for(int i=;i<tp;i++)R[i]=(R[i>>]>>)|((i&)<<(l-));
fft(invb,tp,);
fft(c,tp,);
for(int i=;i<tp;i++)a[i]=(ll)invb[i]*c[i]%p;
fft(a,tp,-);
printf("%d\n",(ll)a[m]*jie[m-]%p);
return ;
}

NTT+多项式求逆的更多相关文章

  1. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  2. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  3. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  4. 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

    3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题 ...

  5. BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆

    不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...

  6. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  7. [BZOJ3456]城市规划:DP+NTT+多项式求逆

    写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...

  8. P4233-射命丸文的笔记【NTT,多项式求逆】

    正题 题目链接:https://www.luogu.com.cn/problem/P4233 题目大意 随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数. 对于每个\( ...

  9. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  10. luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法

    Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 # ...

随机推荐

  1. node jade模板数据库操作

    /* Navicat MySQL Data Transfer Source Server         : localhost Source Server Version : 50519 Sourc ...

  2. Kubernetes探索学习001--Centos7.6使用kubeadm快速部署Kubernetes集群

    Centos7.6使用kubeadm快速部署kubernetes集群 为什么要使用kubeadm来部署kubernetes?因为kubeadm是kubernetes原生的部署工具,简单快捷方便,便于新 ...

  3. Python 命令行解析工具 Argparse介绍

    最近在研究pathon的命令行解析工具,argparse,它是Python标准库中推荐使用的编写命令行程序的工具. 以前老是做UI程序,今天试了下命令行程序,感觉相当好,不用再花大把时间去研究界面问题 ...

  4. CocoaPods did not set the base configuration of your project because your project already has a custom config set.

    今天在封装自己的消息推送SDK的时候,pod install 的时候,突然报这个错误,解决方式如下: $ pod install Analyzing dependencies Downloading ...

  5. bootstrap table的展开行问题

    照着网上与api里说的添加detailView属性设置为true,detailFormatter属性为展开后的内容,但是设置之后发现,在表格每一行最前面是多出一列正常该显示"+"的 ...

  6. Task 5.1 电梯调度程序需求调研报告

    1.任务概述: 1.1任务背景:试想一下,石家庄铁道大学基础教学楼的电梯配置如下:大厦有18层, 4部电梯,很多乘客使用这些电梯的日常(旅客重量:平均70公斤最大120公斤,最小45公斤).其他常量数 ...

  7. Leetcode题库——6.Z字形变换

    @author: ZZQ @software: PyCharm @file: convert.py @time: 2018/9/20 20:12 要求: Z字形变换 将字符串 "PAYPAL ...

  8. Software Defined Networking(Week 2, part 2)

    History of SDN 1.3 - 1.4 课程地址 Network Virtualization 网络可虚拟化,可以说是SDN的一项核心内容,同样也源自很多先前的技术和思想.我们先讨论何为网络 ...

  9. angularJS1笔记-(7)-控制器的合理使用(显示和隐式的依赖注入)

    AngularJS依赖注入 1.隐式注入:不需要开发人员干预,angularJS自动根据参数的名称识别和注入数据 app.controller("myCtrl".function( ...

  10. Struts hibernate Spring 框架原理

    转自:http://www.cnblogs.com/javaNewegg/archive/2011/08/28/2156521.html 原理:1.通过Configuration().configur ...