题面

好久以前写的,发现自己居然一直没有写题解=。=

扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$

然后每次递归那个$a^{b\%φ(p)}$的部分,最后在$φ(p)=1$时返回即可

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e7+;
int pri[N],npr[N],phi[N];
long long T,mod;
void prework()
{
phi[]=,npr[]=true;
for(int i=,sz=;i<=;i++)
{
if(!npr[i]) pri[++sz]=i,phi[i]=i-;
for(int j=;j<=sz&&i*pri[j]<=;j++)
{
npr[i*pri[j]]=true;
phi[i*pri[j]]=phi[i]*pri[j];
if(i%pri[j]) phi[i*pri[j]]-=phi[i]; else break;
}
}
}
long long qpow(long long x,long long k,long long md)
{
if(k==) return x%md;
long long tmp=qpow(x,k/,md);
return k%?tmp*tmp%md*x%md:tmp*tmp%md;
}
long long Gas(long long md)
{
return md==?:qpow(,Gas(phi[md])+phi[md],md);
}
int main ()
{
scanf("%lld",&T),prework();
while(T--)
{
scanf("%lld",&mod);
printf("%lld\n",Gas(mod));
}
return ;
}

解题:BZOJ 3884 上帝与集合的正确用法的更多相关文章

  1. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  2. BZOJ 3884 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...

  3. 【数学】[BZOJ 3884] 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...

  4. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  5. bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...

  6. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  7. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  8. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  9. BZOJ 3884 上帝与集合的正确用法题解

    一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...

随机推荐

  1. Django_rest_framework_Serializer

    序列化Serializer 序列化用于对用户请求数据进行验证和数据进行序列化(为了解决queryset序列化问题). 那什么是序列化呢?序列化就是把对象转换成字符串,反序列化就是把字符串转换成对象 m ...

  2. Beta阶段基于NABCD评论作品

    组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶  刘佳瑞  公冶令鑫  杨磊  刘欣  张宇  卢帝同 一.拉格朗日2018--<飞词> 1.1.NABCD分析 N(Need,需求):该小 ...

  3. Scrum Meeting 3 -2014.11.5

    这几天小伙伴们都在努力,研究出不少改进方案并加以设计和实施了,分词算法的优化进度可观,而其他的任务在改进的过程中产生了些问题,对于之前代码的设计感到疑惑,我们找到了上届的学长们咨询,他们也给出了不少建 ...

  4. 蹭课神器NABCD分析

    特点:添加了课程分类,同学们可以根据自己的兴趣蹭课N(need):众所周知,大学是丰富多彩的自有天堂,学生能够在课余去旁听一些自己有兴趣的课,我们项目要解 决的就是同学们对校园课程有针对性的选择.A( ...

  5. java拓荒者

    因为是初学者 最近在看那个<java从入门到精通 韩顺平>的视频 觉得好不错 虽然视频的分辨率强差人意 但仍可接受 学知识嘛 用我们广东话说 :“鬼叫你穷,顶硬上” 韩老师的声音较好 课堂 ...

  6. 【图论】POJ-3169 差分约束系统

    一.题目 Description Like everyone else, cows like to stand close to their friends when queuing for feed ...

  7. Maya学习笔记

    软件: Maya 2016 : 参考教材: Maya 2016 中文版标准教程 ; 改变视图颜色 [窗口]|[设置/首项选择]|[颜色设置]|[3D视图]: 观察视图 旋转视图 Alt + 鼠标左键 ...

  8. Daily target小队介绍(刘畅,陈杰,杨有存,唐祎琳,王晓哲,邵汝佳)

    一.团队介绍 1.团队构成: 2.队名: Daily target,我们的口号是Target your day! 3.团队项目描述: 我们计划写一个用于老师发布任务,学生接受任务的安卓app.教师安排 ...

  9. 结对作业(web)

    作业源代码地址:https://git.coding.net/mal123/arithmetic.git 网页版测试地址:http://47.93.197.5:8080/mal_war_explode ...

  10. Source Insight中的多行注释

    转自:http://www.cnblogs.com/dongzhiquan/archive/2013/03/04/2943448.html 我们经常要对一整段代码进行注释,很多代码编辑器都提供了这样的 ...