解题:BZOJ 3884 上帝与集合的正确用法
好久以前写的,发现自己居然一直没有写题解=。=
扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$
然后每次递归那个$a^{b\%φ(p)}$的部分,最后在$φ(p)=1$时返回即可
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e7+;
int pri[N],npr[N],phi[N];
long long T,mod;
void prework()
{
phi[]=,npr[]=true;
for(int i=,sz=;i<=;i++)
{
if(!npr[i]) pri[++sz]=i,phi[i]=i-;
for(int j=;j<=sz&&i*pri[j]<=;j++)
{
npr[i*pri[j]]=true;
phi[i*pri[j]]=phi[i]*pri[j];
if(i%pri[j]) phi[i*pri[j]]-=phi[i]; else break;
}
}
}
long long qpow(long long x,long long k,long long md)
{
if(k==) return x%md;
long long tmp=qpow(x,k/,md);
return k%?tmp*tmp%md*x%md:tmp*tmp%md;
}
long long Gas(long long md)
{
return md==?:qpow(,Gas(phi[md])+phi[md],md);
}
int main ()
{
scanf("%lld",&T),prework();
while(T--)
{
scanf("%lld",&mod);
printf("%lld\n",Gas(mod));
}
return ;
}
解题:BZOJ 3884 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ 3884 上帝与集合的正确用法题解
一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...
随机推荐
- ofo容器pass架构分享
一.我们先要了解一下,为什么企业需要一个paas平台?或者可以说paas到底能做什么? 1.1 我们先来了解一下paas到底是什么? PaaS是Platform-as-a-Service的缩写,意思是 ...
- Digitalocean + ss 搭建加密通信代理服务器
本文以 DigitalOcean + ss/ssr 配置加密通道***为例,记录了手动搭梯子的过程. 启动一个服务器实例的操作可以参考我的这篇博文,这里主要介绍 ss/ssr 的服务搭建过程. 首先 ...
- linq与lambda 常用查询语句写法对比
LINQ的书写格式如下: from 临时变量 in 集合对象或数据库对象 where 条件表达式 [order by条件] select 临时变量中被查询的值 [group by 条件] Lambda ...
- 随手记录-linux-添加epel源
下载各种yum源 https://opsx.alibaba.com/mirror https://blog.csdn.net/harbor1981/article/details/51135623
- Scurm Meeting 11.2
成员 今日任务 明日计划 用时 徐越 写功能规格说明书,代码移植 创建数据库,代码移植 3h 赵庶宏 编写功能规格说明书,学习访问数据库代码,代码迁移 代码迁移 5h 武鑫 设计界面:独立完成一些简单 ...
- web06-PanduanLogin
电影网站:www.aikan66.com 项目网站:www.aikan66.com 游戏网站:www.aikan66.com 图片网站:www.aikan66.com 书籍网站:www.aikan66 ...
- Android界面设计适配不同屏幕的尺寸和密度解读
Android是运行在各种提供不同的屏幕尺寸和密度的设备.Android系统提供跨设备的统一开发环境和处理大部分的工作,以调整每个应用程序的用户界面,以在其上显示的画面. 同时,该系统提供了API,允 ...
- 【CS231N】5、神经网络静态部分:数据预处理等
一.疑问 二.知识点 1. 白化 白化操作的输入是特征基准上的数据,然后对每个维度除以其特征值来对数值范围进行归一化.该变换的几何解释是:如果数据服从多变量的高斯分布,那么经过白化后,数据的分布将 ...
- Unity3D游戏开发——显示物品的仓库UI
访问仓库物品列表的方法 为了在UI中显示物品列表,我们需要给InventoryManager添加两个能够访问它的公有方法: 代码: ··· public List<string> GetI ...
- JAVA自学日记——Part Ⅰ.
和C++比较相似,Java同样是面向对象的设计语言,在基础的语句上有一些不大的差别,经过两天的学习,大概的了解了在eclipse中如何进行简单的编程,解决一些简单的问题,诸如在学习C时做过的“字符串倒 ...