解题:BZOJ 3884 上帝与集合的正确用法
好久以前写的,发现自己居然一直没有写题解=。=
扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$
然后每次递归那个$a^{b\%φ(p)}$的部分,最后在$φ(p)=1$时返回即可
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e7+;
int pri[N],npr[N],phi[N];
long long T,mod;
void prework()
{
phi[]=,npr[]=true;
for(int i=,sz=;i<=;i++)
{
if(!npr[i]) pri[++sz]=i,phi[i]=i-;
for(int j=;j<=sz&&i*pri[j]<=;j++)
{
npr[i*pri[j]]=true;
phi[i*pri[j]]=phi[i]*pri[j];
if(i%pri[j]) phi[i*pri[j]]-=phi[i]; else break;
}
}
}
long long qpow(long long x,long long k,long long md)
{
if(k==) return x%md;
long long tmp=qpow(x,k/,md);
return k%?tmp*tmp%md*x%md:tmp*tmp%md;
}
long long Gas(long long md)
{
return md==?:qpow(,Gas(phi[md])+phi[md],md);
}
int main ()
{
scanf("%lld",&T),prework();
while(T--)
{
scanf("%lld",&mod);
printf("%lld\n",Gas(mod));
}
return ;
}
解题:BZOJ 3884 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ 3884 上帝与集合的正确用法题解
一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...
随机推荐
- RAID中条带的概念
raid把数据分成条带,一个条带横跨所有数据磁盘,每个磁盘上存储条带的一部分,称为sagment,也称为条带深度.一个条带包含的扇区或块的个数,称为条带长度. raid向操作系统提供的是卷,是连续的扇 ...
- 将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachable or the URL may be incorrect
将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachabl ...
- TFS任务预览
不太熟悉TFS任务项的建立. 初步建立及按老师要求分配到个人的任务设置与时间安排如下: (长时间任务可由多人合作完成,具体根据情况迅速调整任务分配) 加上每人需要进行阅读前一小组的代码需要时间2*8= ...
- 奔跑吧DKY——团队Scrum冲刺阶段-Day 5
今日完成任务 谭鑫:继续解决背景音乐的问题,修改游戏中的bug. 黄宇塘:背景图片需重做,开始制作人物图片和背景图. 赵晓海:制作人物图及背景图. 方艺雯:制作人物图,编写博客. 王禹涵:继续解决背景 ...
- c# bitmap和new bitmap(bitmap)及在System.Drawing.Image.get_RawFormat()报错“参数无效”
问题情境: 给picturebox赋image属性,我用一下代码,出错: Bitmap theBitmap = convertCameraData.display(rawDataArray, heig ...
- 读书笔记 之 java编程思想3
现在已经读到第二章 ,这个发现好多已经能都知道了 但是还是有自己比较生疏的比如说就是 储存到什么地方:书中介绍五种储存的地方 分别为1储存器,2堆栈,3堆4常量储存 5非RAM储存,java的出来 ...
- Javascript面向对象二
Javascript面向对象二 可以通过指定原型属性来对所有的对象指定属性, Object.prototype.name="zhangsan"; Object.prototype. ...
- FileInputStream与FileOutputStream练习题 -------------------图片拷贝
package com.outputstream; import java.io.File; import java.io.FileInputStream; import java.io.FileNo ...
- BETA-2
前言 我们居然又冲刺了·二 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 了解OpenCV下的视频参数及其调用方法 初步编码 接下来的计划 文档工作 速 ...
- ns-3 可视化模拟 (一) PyViz
PyViz 个人觉得这个的使用简单. (1)首先安装 这是ubuntu下的 sudo apt-get install python-dev python-pygraphviz python-kiwi ...