Pytorch数据读取框架
训练一个模型需要有一个数据库,一个网络,一个优化函数。数据读取是训练的第一步,以下是pytorch数据输入框架。
1)实例化一个数据库
假设我们已经定义了一个FaceLandmarksDataset数据库,此数据库将在以下建立。
import FaceLandmarksDataset
face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
root_dir='data/faces/',
transform=transforms.Compose([ Rescale(256), RandomCrop(224), ToTensor()]) )
或者使用torchvision.datasets里封装的数据集(MNIST、Fashion-MNIST、KMNIST、EMNIST、COCO、LSUN、ImageFolder、DatasetFolder、Imagenet-12、CIFAR、STL10、SVHN、PhotoTour、SBU、Flickr、VOC、Cityscapes)
import torchvision.datasets
imagenet_data = torchvision.datasets.ImageFolder('path/to/imagenet_root/')
2)创建一个数据加载器
import torch.utils.data.DataLoader
imagenet_loader = torch.utils.data.DataLoader(imagenet_data,
batch_size=4,
shuffle=True,
num_workers=4)
#or facelandmark_loader = torch.utils.data.DataLoader(face_dataset,
batch_size=4,
shuffle=True,
num_workers=4)
可见,数据加载器是通用的,只有数据库实例不一样,其它的都参数都一样,参数值可以根据任务需要自己调。
3)使用数据库
数据加载器可迭代的,我们可以使用数据库:
for item in facelandmark_loader:
images,labels = item
do_somethi
当然, 我们也可以直接对数据库实例face_dataset进行下标操作,但这样只能够每次获取一条数据。
sample = face_dataset[index]
Pytorch数据读取框架的更多相关文章
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- Pytorch数据读取与预处理实现与探索
在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录 ...
- Pytorch数据读取详解
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler ...
- [Pytorch]PyTorch Dataloader自定义数据读取
整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所 ...
- 从零搭建Pytorch模型教程(一)数据读取
前言 本文介绍了classdataset的几个要点,由哪些部分组成,每个部分需要完成哪些事情,如何进行数据增强,如何实现自己设计的数据增强.然后,介绍了分布式训练的数据加载方式,数据读取的整个 ...
- geotrellis使用(二)geotrellis-chatta-demo以及geotrellis框架数据读取方式初探
在上篇博客(geotrellis使用初探)中简单介绍了geotrellis-chatta-demo的大致工作流程,但是有一个重要的问题就是此demo如何调取数据进行瓦片切割分析处理等并未说明,经过几天 ...
- SSD源码解读——数据读取
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...
- 分享自己的超轻量级高性能ORM数据访问框架Deft
Deft 简介 Deft是一个超轻量级高性能O/R mapping数据访问框架,简单易用,几分钟即可上手. Deft包含如下但不限于此的特点: 1.按照Transact-SQL的语法语义风格来设计,只 ...
- 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...
随机推荐
- tarjan解决路径询问问题
好久没更新了,就更一篇普及组内容好了. 首先我们考虑如何用tarjan离线求出lca,伪代码大致如下: def tarjan(x): 将x标记为已访问 for c in x的孩子: tarjan(c) ...
- BZOJ 2157: 旅游
2157: 旅游 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1347 Solved: 619[Submit][Status][Discuss] ...
- 命令行Scp的使用----远程拷贝文件
1.用CRT分别连上两台需要传输文件的linux系统服务器,并检查防火墙是否关闭. 查看防火墙状态: /etc/init.d/iptables status 若防火墙启用,暂时关闭防火墙: /etc/ ...
- 前端学习 -- Css -- 兄弟元素选择器
为一个元素后边的元素设置css样式: 语法:前一个 + 后一个. 作用:可以选中一个元素后紧挨着的指定的兄弟元素. 为一个元素后边的所有相同元素设置css样式: 语法:前一个 ~ 后边所有. < ...
- Android中Selector的用法(改变ListView和Button的默认背景)
Android中的Selector的用法 http://blog.csdn.net/shakespeare001/article/details/7788400#comments Android中的S ...
- C++模版详解(-)
C++模版: 模版时C++支持多参数多态的工具,使用模版可以为用户为类或函数声明一般模式,使得类的数据成员,或者成员函数的参数,返回值取得任意类型. 模版是一种对类型进行参数化的工具: 通 ...
- Hadoop基础-HDFS分布式文件系统的存储
Hadoop基础-HDFS分布式文件系统的存储 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.HDFS数据块 1>.磁盘中的数据块 每个磁盘都有默认的数据块大小,这个磁盘 ...
- 科学计算三维可视化---TVTK入门(安装与测试)
推文:http://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html 推文:http://code.enthought.com/pages/mayav ...
- Linux下的Jenkins+Tomcat+Maven+Git+Shell环境的搭建使用(jenkins自动化部署)
jenkins自动化部署 目标:jenkins上点构建(也可以自动检查代码变化自动构建)>>>项目部署完成. 一.安装jenkins 1.下载jenkins 这里我选择的是war包安 ...
- 穷竭搜索: POJ 2718 Smallest Difference
题目:http://poj.org/problem?id=2718 题意: 就是输入N组数据,一组数据为,类似 [1 4 5 6 8 9]这样在0~9之间升序输入的数据,然后从这些数据中切一 ...